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Abstract 

This thesis introduces some formal techniques which can be used for synthesis of VLSI 

(very large scale integration) architectures for DSP (digital signal processing) algorithms. 

These techniques can be used to design architectures for single-rate/single-dimensional 

DSP, multirate/single-dimensional DSP, and single-rate/multi-dimensional DSP. 

For single-rate/single-dimensional DSP, we have developed a novel technique for ex- 

haustively generating all retiming and scheduling solutions for the DSP algorithm. The 

significance of this contribution is two-fold. First, it allows a circuit designer to explore 

a large space of possible high-level implementations for the algorithm, which allows the 

designer to make a good decision about the high-level architectural details of the de- 

sign. Second, this work explicitly shows the important interaction between retiming and 

scheduling in high-level synthesis. While retiming and scheduling have been treated as 

separate problems in the past, our work uses a mathematical framework to show that 

retiming is a special case of scheduling. 

Also for single-rate/single-dimensional DSP, we have developed techniques for com- 

puting the minimum number of registers required to implement a statically scheduled 

DSP program. Closed-form expressions are derived for computing the minimum number 

of registers assuming various memory models with or without retiming the scheduled 

DFG. This is an important problem because memory typically occupies a large portion 

of the area of a DSP implementation (often over half of the area), and minimizing this 

area leads to more efficient designs. 

For multirate/single-dimensional DSP, we have developed a multirate folding tech- 

nique which can be used to synthesize single-rate architectures from multirate DSP 

algorithms. Prior to the development of this formal technique, the design of single-rate 

architectures for multi-rate DSP algorithms was performed using ad hoc design tech- 

niques. 

For single-rate/multi-dimensional DSP, we have developed two techniques for retim- 

ing two-dimensional data-flow graphs. These techniques are designed to minimize the 

memory requirements under a given clock period constraint. These techniques can result 

in retimed circuits which use less than 50% of the memory required by previously used 

techniques. I 
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Abstract 

This thesis introduces some formal techniques which can be used for synthesis of VLSI 

(very large scale integration) architectures for DSP (digital signal processing) algorithms. 

These techniques can be used to design architectures for single-rate/single-dimensional 

DSP, multirate/single-dimensional DSP, and single-rate/multi-dimensional DSP. 

For single-rate/single-dimensional DSP, we have developed a novel technique for ex- 

haustively generating all retiming and scheduling solutions for the DSP algorithm. The 

significance of this contribution is two-fold. First, it allows a circuit designer to explore 

a large space of possible high-level implementations for the algorithm, which allows the 

designer to make a good decision about the high-level architectural details of the de- 

sign. Second, this work explicitly shows the important interaction between retiming and 

scheduling in high-level synthesis. While retiming and scheduling have been treated as 

separate problems in the past, our work uses a mathematical framework to show that 

retiming is a special case of scheduling. 

Also for single-rate/single-dimensional DSP, we have developed techniques for com- 

puting the minimum number of registers required to implement a statically scheduled 

DSP program. Closed-form expressions are derived for computing the minimum number 

of registers assuming various memory models with or without retiming the scheduled 

DFG. This is an important problem because memory typically occupies a large portion 

of the area of a DSP implementation (often over half of the area), and minimizing this 

area leads to more efficient designs. 

For multirate/single-dimensional DSP, we have developed a multirate folding tech- 

nique which can be used to synthesize single-rate architectures from multirate DSP 

algorithms. Prior to the development of this formal technique, the design of single-rate 

architectures for multi-rate DSP algorithms was performed using ad hoc design tech- 

niques. 

For single-rate/multi-dimensional DSP, we have developed two techniques for retim- 

ing two-dimensional data-flow graphs. These techniques are designed to minimize the 

memory requirements under a given clock period constraint. These techniques can result 

in retimed circuits which use less than 50% of the memory required by previously used 

techniques. 
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Chapter 1 

Introduction 

1.1    Overview 

This thesis introduces some formal techniques which can be used for the synthesis of 

VLSI [1, 2] (very large scale integration) architectures for DSP [3, 4, 5, 6] (digital signal 

processing) algorithms. DSP is used in many applications such as compact disc players, 

digital television, videoconferencing systems, digital telephony, radar, and sonar, just 

to name a few. VLSI architectures for DSP algorithms must be designed to satisfy 

constraints on the sampling rate, chip size, and power consumption. Without adequate 

implementations, DSP algorithms would not be useful to consumers. 

Figure 1.1 shows a simplified version of the process of generating a silicon solution 

for a given application. There are three main steps in this process. The first step is 

to develop or choose the proper DSP algorithm for the application. The second step 

is high-level synthesis [7] -[26], which maps the algorithm to a VLSI architecture, and 

the third step is low-level synthesis, which maps the VLSI architecture to silicon. These 

three steps are not independent, and it has become apparent that a good understanding 

of all three of these steps is required to design an efficient silicon solution for a given 

application. The focus of this thesis, as indicated in the figure, is on the area of high- 



level synthesis, i.e., designing high-level VLSI architectures for DSP algorithms. The 

formal techniques introduced in this thesis help provide a better understanding of the 

algorithm -» architecture step and provide new techniques for mapping algorithms to 

architectures. 

General Procedure Example 

Application 

This Thesis^ 

^Lh 

Filter a digital 

signal 

Requires Signal Processing Expertise 

DSP Algorithm 

lh".^>,imA.i>tim^,mm- 

^LL 
Fourth-order 

IIR Filter 

^sr*l/-Algorithm. 
WerelSynthesis'..: 'HM>^W^^^M^S?i A   -..'SSfej» 
rithm Transformations   'Vv^5^^«MrlHB3fSi ; *':<3&&*T- 

VLSI 

Architecture 

±k. 

Filter with two 
multipliers and 

one adder 

Low-level Synthesis 

Silicon 

Njl 
Single-phase clock 

Wallace Tree mult. 

Carry-select adder 

Figure 1.1: A simplified version of the design process from application to silicon. 

As DSP algorithms become more complex and transistor sizes become smaller, the 

tasks of designing and testing VLSI architectures for DSP have become very challenging 

due to the sheer size of these tasks. In order for products to be introduced in a timely 

manner, CAD (computer-aided design) tools [8, 26, 24, 16, 10, 12, 20, 22, 23, 14, 15] are 

often required. These tools not only decrease design time, but they also make the design 

process more tractable, improving the reliability of the final VLSI design. These CAD 

tools are based on formal design techniques which can be used to automate the process 

of synthesizing VLSI architectures for DSP algorithms. 



Some formal techniques for synthesizing VLSI architectures for DSP algorithms are 

introduced in this thesis. These techniques can be used to explore new VLSI designs for 

DSP algorithms and improve CAD tools which are used to design VLSI architectures for 

DSP algorithms. A description of these techniques is given in the following section. 

1.2    Contributions 

The contributions of this thesis fall into the categories of retiming [27], folding [28], and 

register minimization [29]. A concise description of these contributions follows. 

• Retiming 

- Exhaustive retiming: A novel technique for exhaustively generating all re- 

timing solutions for a DFG is developed. This technique, which is based on 

the ideas in [30], [31], allows a circuit designer to examine many retiming 

solutions rather than a single solution which is generated using a heuristic or 

an optimization scheme. This is useful because it is easy to select the best 

retimed solution optimized for circuit parameters, such as routing area, from 

all retiming solutions. 

- Two-dimensional retiming: Two novel techniques are developed for retiming 

two-dimensional data-flow graphs (DFGs) to minimize the memory require- 

ments under a given clock period constraint. These two techniques are inte- 

ger linear programming (ILP) 2-D retiming and orthogonal 2-D retiming [32]. 

These techniques offer greater flexibility than the technique proposed in [33], 

and they can reduce the memory requirement of retimed circuits by over 50% 

compared to the technique in [34]. 



- Multirate retiming: Multirate retiming constraints are formalized as part of 

the multirate folding formulation. Multirate retiming has received little at- 

tention in the past, and most of the previous work has been focused on main- 

taining properties such as liveness and reachability in synchronous data-flow 

graphs (e.g., see [35]). The treatment of multirate retiming in this thesis con- 

siders the problem at a more fundamental level by using some simple identities 

of multirate DSP [5]. We show that our multirate retiming formulation is use- 

ful for high-level synthesis of single-rate VLSI architectures for multirate DSP 

algorithms [36]. 

Folding 

- Exhaustive Scheduling: A novel technique for exhaustively generating all time 

schedules for folding a DFG is developed [31]. This technique, termed "ex- 

haustive scheduling", has three important features. First, it shows the im- 

portant interaction between retiming and scheduling in a solid mathematical 

framework. Retiming and scheduling have only recently been considered to- 

gether [11, 26, 12, 37, 38], and none of these works has given a mathematical 

framework for demonstrating how retiming and scheduling interact in high- 

level synthesis. Second, our mathematical framework can be used to show 

that retiming is simply a special case of scheduling. Many researchers have 

thought this to be true for a long time, but none have shown this mathe- 

matically. Finally, exhaustive scheduling allows a circuit designer the option 

of evaluating several different schedules for characteristics that are difficult 

to include in heuristics [12, 15, 26] or ILP models [39, 40, 22, 37] used for 

scheduling. 



- Multirate folding: A novel technique for folding multirate DSP algorithms is 

developed [36]. This technique maps multirate DSP algorithms to single-rate 

VLSI architectures. For example, multirate folding can be used to design 

single-rate architectures for algorithms which use multirate filter banks, such 

as the discrete wavelet transform (DWT) [41, 42, 43, 44, 45]. Prior to the 

development of multirate folding, single-rate VLSI architectures for multirate 

DSP algorithms were designed using ad hoc design techniques. Multirate 

folding provides a vehicle for systematically designing improved architectures 

for multirate DSP algorithms. 

Register Minimization 

- Single-rate register minimization: Expressions are derived for computing the 

minimum number of registers required to implement a statically scheduled 

single-rate DSP algorithm [46]. To the best of our knowledge, no such expres- 

sions existed prior to this work. Expressions are derived for three different 

memory models. These expressions can be used in CAD tools to evaluate 

the quality of schedules with respect to memory requirements. For example, 

these expressions are used along with our exhaustive scheduling technique to 

determine the schedules which require the minimum number of registers. 

- Multirate register minimization: Expressions are derived for computing the 

minimum number of registers required to implement a statically scheduled 

multirate DSP algorithm. This novel approach to evaluating memory re- 

quirements allows for the design of memory-efficient single-rate architectures 

for the implementation of multirate DSP algorithms. 



1.3    Outline 

This thesis is organized as follows. The exhaustive retiming and scheduling algorithms 

are developed in Chapter 2. This chapter also provides a background information on 

retiming and folding. Register minimization for statically scheduled single-rate data-flow 

graphs is considered in Chapter 3. Chapter 4 contains the derivation of the multirate 

folding transformation, including the work on retiming for multirate folding and register 

minimization for folded multirate DSP algorithms. The two-dimensional retiming tech- 

niques are derived in Chapter 5, and conclusions and suggestions for future research are 

presented in Chapter 6. 



Chapter 2 

Exhaustive Retiming and 
Scheduling 

2.1    Introduction 

Time scheduling and retiming [27] are important tools used to map behavioral descrip- 

tions of algorithms to physical realizations. These tools are used during the design of 

software for programmable digital signal processors (DSPs), during high-level synthesis 

of applications-specific integrated circuits (ASICs), and during the design of reconfig- 

urable hardware such as field-programmable gate arrays (FPGAs). Time scheduling and 

retiming operate directly on a behavioral description of the algorithm, such as a data- 

flow graph (DFG). Since the decisions made at the algorithmic level tend to have greater 

impact on the design than those made at lower levels, the importance of time scheduling 

and retiming cannot be overstated. 

This chapter presents new formulations of the time scheduling and retiming problems, 

and based on these formulations, new techniques are developed to determine the solu- 

tions to these problems [31]. (From this point forward, we shall refer to time scheduling 

as simply scheduling.) These formulations are valid for strongly connected (SC) graphs, 

where a strongly connected graph has a path u ~> v and a path v ~» u for every pair of 



nodes u, v in the graph. We focus on strongly connected graphs because these graphs 

traditionally present the greatest challenges when they are mapped to physical realiza- 

tions due to the feedback present in the graphs. An example of a strongly connected 

DFG is the fifth-order wave digital elliptic filter [47] in Figure 2.18 which is commonly 

used as a benchmark for demonstrating high-level synthesis techniques. 

Scheduling consists of assigning execution times to the operations in a DFG such 

that the precedence constraints of the DFG are not violated. A great deal of litera- 

ture exists on the topic of scheduling in the context of high-level synthesis for ASIC 

design for DSP applications [7] -[26]; however, none of these works gives a formal def- 

inition of scheduling along with systematic techniques for exhaustively generating the 

solutions to the scheduling problem. This chapter presents new scheduling formulations 

and algorithms for exhaustively generating the solutions to the scheduling problem. Two 

scheduling problems are considered, namely, scheduling for time-multiplexed execution 

on bit parallel architectures and scheduling for execution on bit-serial architectures. 

Retiming consists of moving delays around in a DFG without changing its function- 

ality. As with scheduling, there is a huge body of literature on retiming, and new 

applications for retiming are constantly being found. For example, due to the recent 

demand for low-power digital circuits in portable devices, some recent work has focused 

on retiming for power minimization [48]. The groundbreaking paper on retiming [27] 

describes algorithms for tasks such as retiming to minimize the clock period and retim- 

ing to minimize the number of registers (states) in the retimed circuit. An approach to 

retiming which is based on circuit theory can be used to generate all retiming solutions 

for a DFG [30]. This approach was the motivation for our work on exhaustive scheduling. 

In this chapter, we show that retiming is a special case of scheduling, and consequently, 

the formulation of the scheduling problem and the techniques for exhaustively generating 



the scheduling solutions can also be applied to retiming. 

The impact of the formulations derived in this chapter are as follows. 

• The interaction between retiming and scheduling is important [11], and our formu- 

lations give a simple way to observe this interaction. 

• We show that retiming is a special case of scheduling. 

• We give solid mathematical descriptions of the scheduling and retiming problems 

in a common framework. 

• We develop techniques for generating all solutions to a particular scheduling or 

retiming problem. This allows a developer the ability to search the design space 

for the best solution, particularly when various parameters are difficult to model 

and include in a cost function. This has applications to software design, ASIC 

design, and design for reconfigurable hardware implementations. 

« Our formulations provide for a better understanding of scheduling and retiming 

which can be used to develop new heuristics for these problems. 

Many of the results in this chapter rely upon graph theory. Section 2.2 gives a review 

of some results from graph theory along with the derivation of an algorithm for finding 

the independent loops in a strongly connected directed graph. Our formulations for 

scheduling to bit-parallel and bit-serial architectures are given in Section 2.3 along with 

an explanation of how retiming can be viewed as a special case of scheduling. Section 2.4 

contains the description of a systematic technique used to exhaustively generate the 

scheduling and retiming solutions. Section 2.5 describes two techniques for exhaustively 

generating the schedules which satisfy a given set of resource constraints for a bit-parallel 



architecture. Section 2.5 includes the results of scheduling the fifth-order wave-digital 

elliptic filter in Figure 2.18 with and without resource constraints. Our conclusions are 

given in Section 2.6. 

2.2    Introduction to Graph Theory 

This section provides a brief introduction to graph theory followed by an algorithm 

for finding the independent loops in a strongly connected directed graph. Most of the 

definitions and results in Sections 2.2.1 and 2.2.2 can be found in [49]. 

2.2.1    Basic Definitions 

We are concerned only with directed graphs. A directed graph G is represented as 

G =< V,E,d,w >, where 

• V is the set of vertices (nodes) of G. The vertices represent computations. 

• E is the set of directed edges of G. A directed edge e e E from node u G V to 

node v G V is denoted as u A v. The edges represent communication between the 

nodes. 

• w{e) is the number of delays on the edge e, also referred to as the weight of the 

edge. 

• d(v) is the computation time of the node v. 

A directed path «o^«^-"^' un_i ^ vn is denoted as v0 ~» vn. A simple path 

is a path with distinct edges, and an elementary path has distinct nodes. A cycle is a 

closed path (i.e., v0 = vn). A simple cycle has distinct edges and an elementary cycle has 
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distinct nodes. An elementary cycle in a directed graph will be referred to as a "loop" 

in this chapter. 

A directed graph is strongly connected if for every pair of vertices u, v € V, there 

exists a path u ^ v and v ~> u. A directed spanning tree is a subgraph of G which 

has a root node vR and a path vR ~> v for all v G V except vR. The directed spanning 

tree contains no cycles. If |V| is the number of nodes in G, then a directed spanning 

tree contains exactly |V| nodes and |7| - 1 edges. An edge of a directed spanning tree 

is called a branch, and the edges of G not included in the tree are called links. Every 

strongly connected graph contains a directed spanning tree. 

An edge e from u to v (u A v) is incident with vertices u and v. More specifically, e 

is incident from u and incident into v. 

The set operations such as union, intersection, difference, complement, etc., are op- 

erations on the edges of a graph. Let Ga and Gb be two subgraphs of a connected graph 

G. Ga U Gb consists of all edges in Ga or Gb (or both) and the vertices incident with 

these edges. G - Ga is formed by removing all edges in Ga from G, and then removing 

all vertices with no incident edges. 

2.2.2    Matrix Representations 

A strongly connected graph contains exactly \E\ - \V\ + 1 linearly independent loops 

(this is shown in Section 2.2.3). Let B be the fundamental loop matrix. This matrix, 

which has dimensions {\E\ - \V\ + 1) x \E\, is defined as 

,    _ f 1   if edge j is in loop i 
tJ     1  0   otherwise 

Each row of B represents one of \E\ - | V| + 1 linearly independent loops in B. 

Let A be the oriented incidence matrix of G.   This matrix, which has dimensions 
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\V\ x \E\, is defined as 

aij = < 
1      ej is incident from V{ 
— 1   ej is incident into u, 
0      ej and Uj are not incident 

and rank(A) = |V| - 1. The reduced oriented incidence matrix AR is defined to be any 

\V\ - 1 rows of A. AR has dimensions (|V| - 1) x \E\ and rank(Aß) = |V| - 1. 

Two important relationships between the fundamental loop matrix and the oriented 

incidence matrix are BAr = 0 and BA^ = 0. 

Example 2.1 Consider the directed graph in Figure 2.1. This graph has six nodes and 

nine edges (]V\ = 6 and \E\ = 9). The branches of a directed spanning tree are shown 

with solid lines and the links are shown with dashed lines. The spanning tree contains 

\V\ - 1 edges and \V\ nodes. One possibility for the ({\E\ - \V\ + 1) x \E\) = (4 x 9) B 

matrix is 

B 

110 0 0 10 0 0 
0 110 0 0 10 0 
0 0 10 10 0 10 
0 0 0 10 0 10 1 

(2.1) 

whose columns and rows appear according to the numbering of the edges and loops, re- 

spectively, in Figure 2.1. A is the (|V| x \E\) = (6x9) matrix 

1 0 0 0 0 -1 0 0 0 
0 -1 1 0 0 1 0 -1 0 

-1 1 0 1 0 0 -1 0 0 
0 0 0 0 -1 0 0 1 0 
0 0 -1 0 1 0 1 0 -1 
0 0 0 -1 0 0 0 0 1 

The reader can verify that rank(A) = | V| -1 = 5 and BAT = 04x6- One possible reduced 

incidence matrix is the ((|V| - 1) x \E\) = (5x9) matrix 

Aß = 

0 -1 1 0 0     1 0 -1 0 
-1 1 0 1 0    0 -1 0 0 
0 0 0 0 -1   0 0 1 0 
0 0 -1 0 1     0 1 0 -1 
0 0 0 -1 0    0 0 0 1 

(2.2) 
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which is simply A with the the first row (the row corresponding to node I) removed. The 

reader can verify that rank(AR) = |V| - 1 = 5 and BA^ = 04x5. 

Figure 2.1: A strongly connected graph. The branches of a spanning tree are shown with 
solid lines, while the links of the corresponding cotree are shown with dashed lines. 

2.2.3    Finding the Independent Loops of a Strongly Connected Graph 

Recall that the fundamental loop matrix B has \E\ - |V| + 1 rows, each of which corre- 

sponds to an independent loop. This section gives an algorithm for finding \E\ - \V\ + 1 

independent loops of a strongly connected graph. Let GT be a directed spanning tree of 

G, where VR is the root node of GT, i.e., there is a path VR^V for all v 6 V except VR. 

Algorithm FFL (Find Fundamental Loops) is given below. 

Algorithm FFL (Find Fundamental Loops) 

G^^VR; 

FOR (k = l TO  \E\ - \V\ + 1) 

{ 

STEP 1: lk = a link in (G - G£
}
) which is incident to G^; 

STEP 2: loop(fc) = A loop in GT U G^ U lk which contains lk; 

STEP 3: G%+1) = G(
R

fc)U loop(fc); 

} 

The |£|_|y| + l loops denoted as loop(fc), 1 < A; < (|£;|-|V| + 1), are the fundamental 
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loops of G. 

Algorithm FFL maintains a subgraph GR which initially consists of the root node 

of the directed spanning tree GT- During iteration A:, a link lk in (G - G{
R
]) which is 

incident into a node in G{
R
] is chosen in STEP 1. This link, along with edges in GTUG{

R\ 

form a loop which we denote as loop(fc). G{
R
} is then updated at the end of the iteration. 

To prove that Algorithm FFL works, we need to show that link lk in STEP 1 exists 

for each iteration 1 < k < {\E\ - |V| + 1), and we need to show that loop(fc) in STEP 2 

exists for 1 < k < {\E\ - |V| + 1). 

The following three lemmas are used to prove that link lk exists in STEP 1 of Algo- 

rithm FFL. 

Lemma 2.1 G$ is strongly connected (SC). 

Proof: By induction. GR
l) = vR is SC. Assume that G{

R
] is SC. Each vertex in (G{

R
+l) - 

GR ) is part of loop(fc) which has at least one vertex in G{
R\ so G%+1) is also SC. D 

Lemma 2.2 For every node v in G^ except vR, there is a branch of GT in G^ which 

is incident into the node v. 

Proof: By induction. This holds for GR
l). Assume this holds for G^K All edges of 

loop(k) are in GT U G(
fi

fc) U /. Since G£
+1)

 = G^U loop(A;), all edges in (G(
ß

fe+1) - G(
fi

fc)) 

except lk are tree branches. Since lk is incident into a node in G(
R\ each node in G^+1) 

but not in GR must have a tree branch in G(^+1) incident into it. So every node in 

GR     , except vR, has a tree branch in G(^+1) incident into it. D 

The following lemma uses the result of Lemma 2.2. 
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Lemma 2.3  There are no branches of GT in {G - G$) which are incident to a node 

(k) 
inGR 

Proof: By contradiction. Assume a branch exists in (G - G$) which is incident into 

the node v in GR . Then v must have two incident branches because we know from 

Lemma 2.2 that there is also a branch in G$ which is incident into v. However, no 

node can have two incident branches because multiple paths vR -v* v would exist in GT, 

which is not allowed. D 

Lemma 2.1 and Lemma 2.3 are used to prove that lk exists in STEP 1 of Algorithm 

FFL. 

Theorem 2.4 Link lk in STEP 1 of Algorithm FFL exists for all iterations 1 < k < 

(\E\-\V\ + 1). 

Proof: (G - GR') contains exactly \E\ - |V| + 2 - k links at the start of iteration k, so 
/L.\ 

(G - GR ) contains at least one link during each iteration. Consider the following two 

cases: 

1. There exists a node v eV which is not in G{
R\ i.e., no edges in G$ are incident 

into or from v. Since G is SC, there is a path from v to vR, implying that there is a 

path from v to G{
R\ According to Lemma 2.3, there are no branches in (G - G^) 

which are incident to a node in G{
R\ so there must be a link in (G - G$) which 

is incident into Gfr allowing a path to exist from v to G$. 

2. GR   contains all nodes. Each link in (G - G^) is incident into G{
R
] in this case. 
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The following theorem uses Lemma 2.1 to show that loop(A;) in STEP 2 exists for 

l<k<(\E\-\V\ + l). 

Theorem 2.5  There is a loop containing lk in GT U G^  U lk. 

Proof: Consider Figure 2.2. Nodes vR and v[N are in G%\ Link lk is in (G - G$). 

Path p2 exists in G{^ because G%] is SC (according to Lemma 2.1). Path pi exists 

in GT because VR is the root of the directed spanning tree. So a directed cycle vx 4- 

vrN ^+vR-^> vx exists in GT U G$ U lk. If this directed cycle is not elementary, then it 

must have the form vx 4- VJN ~> ^COMMON ~» «fl ~» ""COMMON ~* "x, from which the 

elementary directed cycle (loop) uA- 4 w//v ~» vCOMMON ~» vx can be found. D 

Figure 2.2:  A directed cycle created by adding link lk which goes from (G - GW) to 
Crfi   . 

We construct the fundamental loop matrix B by letting loop(fc) from Algorithm FFL 

be the k-th row of B. The edges in the graph are numbered such that the first (| V| - 1) 

columns of B correspond to the branches of the spanning tree of G, and the remaining 

(|£7|-|V| + 1) columns correspond to the links. The link lk is assigned to the (|V|-1 + A;)- 

th column of B. By constructing the fundamental loop matrix in this manner, it has the 

form 

B = [ C   |   L ] , (2.3) 
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where C is an (|JE?| -1V| +1) x (|V| -1) matrix and L is an {\E\ -1V| +1) x (\E\ - \V\ +1) 

lower triangular matrix with ones on the diagonal. Note that the columns of L correspond 

to the links of G while the columns of C correspond to the branches of G. Because of 

its form, B has rank (\E\ - \V\ + 1). 

It can also be shown that adding more loops of G to B (adding a loop would consist 

of adding a row to B) does not increase its rank. Therefore, the (\E\ - | V| + 1) rows of 

B form a basis for the loops of G. 

Example 2.2 This example uses Algorithm FFL to form the fundamental loop matrix 

for the graph in Figure 2.1. The spanning tree with node 1 as the root node is shown in 

Figure 2.3(a). At the start of Algorithm FFL G^ is node 1. During iteration k = 1, the 

only possibility for link l\ is edge 6. The only possibility for loop(l) is 1 -4 3 A 2 A 1. 

GR is circled in Figure 2.3(b). During iteration k = 2, there are two possibilities for link 

I2, namely, edges 7 and 8. Choosing edge 7 as I2 results in loop(2) = 3->2-4-5-4 3. 

G,\ is circled in Figure 2.3(c). During iteration k = 3, the two possibilities for link li 

are edges 8 and 9. Choosing edge 8 as /:i results in loop(3) =2-4544-^2. G$ 

is circled in Figure 2.3(d).   During iteration k — 4, link U is edge 9, and loop(4) is 

4 9 7 
3 —> 6 —> 5 —» 3.  The fundamental loop matrix is 

B = 

Note that B has the desired form as given in (2.3). Row k corresponds to loop(k) from 

Algorithm FFL and column i corresponds to edge i of G. 

1 1 0 0 0 
0 1 1 0 0 
0 0 1 0 1 
0 0 0 1 0 

1 0 0 0 " 
0 1 0 0 
0 0 1 0 
0 1 0 1 
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(a) 

6>     &-r<D       © 
(b) 

(c) (d) 

Figure 2.3: The four steps of Algorithm FFL which finds the four fundamental loops of 
the graph shown in Figure 2.1. For each iteration A;, the subgraph G$ is circled. 

2.3    Scheduling and Retiming Formulations 

Time scheduling (or simply scheduling) consists of assigning execution times to the oper- 

ations in a DFG such that the precedence constraints of the DFG are not violated. This 

section considers two scheduling problems, namely, scheduling to a time-multiplexed 

bit-parallel target architecture (we call this bit-parallel scheduling) and scheduling to a 

bit-serial target architecture (we call this bit-serial scheduling). It turns out that the 

bit-parallel and bit-serial scheduling formulations are quite similar, and the retiming 

formulation is a special case of bit-parallel scheduling. 
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2.3.1    Bit-Parallel Scheduling 

In bit-parallel scheduling, a DFG is statically scheduled to a bit-parallel target archi- 

tecture. The scheduling formulation presented in this section is based on the folding 

equation developed in [28]. Folding is the process of executing several algorithm oper- 

ations on a single hardware module. Scheduling is the process of determining at which 

time units a given algorithm operation is to be executed in hardware. 

Before the scheduling formulation is developed, we need a brief description of retiming. 

The basic retiming equation for the edge uAuis [27] 

wr(e) = w(e) +r{v) -r{u), (2.4) 

where w{e) is the number of delays on the edge before retiming, wr(e) is the number of 

delays on the edge after retiming, and r(u) and r(v) are the retiming values of nodes u 

and v, respectively. 

The notions of an iteration and an iteration period are used in this section. An 

iteration is defined as the execution of each node in the DFG exactly once. The iteration 

period is defined as the number of clock cycles used to execute one iteration of the DFG 

in hardware. 

Consider an edge e from node u to node v, denoted asuA«. The operations (nodes) 

in the DFG are scheduled to be executed in the folded architecture once every N clock 

cycles, where N is the iteration period. Let the l-th iteration of nodes u and v be 

executed in hardware at time units Nl + p{u) and Nl +p{v), respectively, where p(u) 

and p{v) are the time partitions to which the nodes are scheduled to execute such that 

0 < p(u),p(v) < N - 1. Let edge e have wr(e) delays, which means that the result of the 

l-th iteration of node u is used by the (I + iur(e))-th iteration of node v. The hardware 

modules which execute nodes u and v are denoted as Hu and Hv, respectively. If Hu is 
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pipelined by d(u) stages, then the result of the /-th iteration of node u is available at 

Nl + p(u) + d(u). This sample is used by the (I + wr{e))-th iteration of node v, which is 

executed by Hv at N(l + wr(e)) +p(v), so the sample must be stored for 

/(e) = N{1 + wr{e)) + p(v) - {Nl + p{u) + d{u)) = Nwr{e) - d{u) + p(v) - p{u) 

clock cycles. Substituting for wr(e) using (2.4) gives 

/(e) = Nw{e) - d{u) - N{r(u) - r(v)) - (p(u) - p(u)). (2.5) 

The edge u A v with w{e) delays in the DFG maps to an edge from Hu to Hv with /(e) 

delays in the architecture, and the data on this edge are switched into Hv at time units 

Nl+p{v). 

Note that we assume that the hardware module Hu is pipelined by d(u) delays, where 

d(u) is the computation time of the node u in the DFG. If we define an \E\ x 1 vector 

du whose i-th element is the computation time of the source node of edge i (the source 

node of an edge is the node that the edge is incident from), then the folding equation 

can be written for all \E\ edges of the DFG simultaneously using 

f = Nvr-du-AT(p + Nr), (2.6) 

where A is the |V| x \E\ incidence matrix for the graph G (see Section 2.2.2), p is the 

|V| x 1 time partition vector which assigns node i to the time partition pi (0 < pi < N — l), 

r is the |V| x 1 retiming vector with the retiming values of the nodes in G, w is \E\ x 1 

and contains the number of delays on each edge of G, f is the \E\ x 1 folding vector 

which contains the number of delays on each edge of the folded architecture, and du is 

the \E\ x 1 delay vector as previously described. This formulation of folding is general 

because it relies upon the retiming solution r and the time partition vector p. One way 

to view this is that the DFG is preprocessed using retiming (hence the r vector) and 
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then scheduling is perfomed on the retimed DFG (hence the p vector). Combining r and 

p using s = p + Nr results in the schedule vector s. Using s, the scheduling problem can 

be written as 

ATs = Nw - du - f. (2.7) 

The rank of the | V| x \E\ incidence matrix A is | V| — 1. Therefore, the left nullspace of 

A must consist of a vector x which satisfies ATx = 0|£|xl. We can see that x = l|v|xi 

because each column of A contains exactly one entry which is a 1, one entry which is a 

— 1, and the remaining entries of the column are zero. 

Using A  1 jv|x! = 0|E|X1 we can write 

AT(s + Jfel) = JVw - d„ - f, 

which means that adding the constant k to each element of the schedule vector does not 

change the number of delays on the edges of the folded architecture. 

The incidence matrix A can be written as 

T 
A = [ ai    a2    • • •   a|v| 

The reduced incidence matrix consists of any | V| — 1 rows of A. Removing row m of A 

results in 

A, (2.8) ai    a2    •••   am_i    am+i    •••   ajv| 

The reduced incidence matrix AR has dimensions (|V| — 1) x \E\ and rank |V| - 1. The 

reduced scheduling vector is defined as 

Sfi = Sl     S2     ■■■     Sm-l     Sm+i      •••     S|v| (2.9) 

which can be written as SR = p« + iVrft, where p^ and r/j are the time partition vector 

p and the retiming vector r with the m-th elements removed. Using AR and SR, we can 
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write 

ATs = s(m)am + A£sR. 

Substituting this into (2.7) results in 

A£SR = Nw - du - f - s(m)am. (2.10) 

Node m is called the reference node. Since replacing s by s' = s + fcl does not alter 

the resulting folded architecture, we can choose k — -s(m) so s'(m) = 0. After replacing 

s with s' = s - s(m)l, (2.10) becomes A^s'fi = Nxv - d„ - f. 

Throughout the remainder of this chapter, we will assume that s' = s - s(m)l so 

s'(m) = 0. In an abuse of notation, we will refer to s' simply as s so that (2.7) can be 

written as 

A£sfi = Nw - du - f. (2.11) 

Lemma 2.6  The equation (2.11) can be solved for s/j if and only ifB(Nw - du) = Bf. 

Proof: The equation (2.11) has a solution if and only if Nw - d„ - f is in the |V| - 1 

dimensional row space of A«. Equivalently, (2.11) has a solution if and only if iVw-du-f 

is perpendicular to the |J57| -1 V| +1 dimensional nullspace of AR because the nullspace is 

the orthogonal complement of the row space in SR|E|. Since BA^ = 0 (see Section 2.2.2), 

the \E\ - \V\ + 1 rows of the fundamental loop matrix B form a basis for the nullspace 

of AR. Therefore, (2.11) has a solution if and only if B(iVw - du - f) = 0. □ 

To understand the meaning of B(iVw - du - f) = 0, we begin by writing B as 

B = [ bi   b2   •••   b|E|_|K|+1 

such that bf is the i-th row of B. Using this, B(Nw - du - f) = 0 implies bf f = 

bf (JVw - du). Recall that 6^ = 1 if edge j is in loop i and bij = 0 otherwise. Therefore, 
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bj f is the total number of folded delays on loop i, and bf(Nvt - du) is a constant that 

depends on G. The equation bf f = bf (iVw - du) states that the number of folded 

delays on loop i is the same for any legal folding vector f, and B(iVw - du - f) = 0 

implies that this is true for all \E\ - \V\ + 1 independent loops of G represented by 

the rows of B. Furthermore, the sum of the number of folded delays for all edges and 

pipelining delays associated with all nodes of a loop is the product of the folding factor, 

N, and the number of loop delay elements, as noted in [28]. It can also be shown that 

this holds for the dependent loops of G, i.e., the number of folded delays on each loop 

of G that is not represented by a row of B is the same for any legal folding vector f. 

If B(JVw - du) = Bf holds, (2.11) has exactly one solution for sß, which is given by 

Sfi = (A/eA];)-1Afi(iVw-du-f). (2.12) 

The above discussion can be summarized by saying that the number of folded delays on 

each loop in G is the same for any valid schedule s. 

In addition to the condition B(Nw - du) = Bf there is also the practical condition 

that the number of delays on an edge in the folded architecture must be nonnegative. 

This condition can be written as f > 0. The constraints for a valid schedule are 

1. B(ATw-d„) =Bf 

2. f > 0. 

2.3.2    Retiming 

Retiming is the process of moving delays around in a circuit without changing the func- 

tionality of the circuit [27]. A brief description of retiming is given at the beginning of 

Section 2.3.1. This section describes how retiming can be viewed as a special case of 

bit-parallel scheduling. 
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The folding equation for a graph G is given in (2.6). If each node in G represents a 

hardware operator, then all operations in the graph are executed in a single clock cycle 

resulting in an iteration period of TV = 1. The elements of the time partition vector p 

are all zero because time partition zero is the only available partition. If we let du = 0, 

i.e., we do not consider any internal pipelining of the operators, (2.6) becomes 

f =(l)w-0-AT(0 + lr) 

which simplifies to 

f = w - ATr. (2.13) 

Since f is the number of delays in the folded architecture, f is equivalent to wr for N = 1, 

so (2.13) becomes 

wr = w - Arr, (2.14) 

which is simply the matrix notation for writing (2.4) simultaneously for all edges of the 

graph. This demonstrates that retiming is simply scheduling when the iteration period 

is unity. 

Using Arln/|xl = 0|E|xl, (2.14) can be written as 

Ar(r + kl) - w - wr. 

If r is a retiming vector which maps the graph G to the retimed graph Gr, then so is 

(r + A;l) for any integer k. 

In the context of retiming (i.e., assuming N = 1, p = 0, du = 0, and f = wr), (2.11) 

can be written as 

A^rR = w-wr. (2.15) 

Recall that (2.11) assumes that s(m) = 0. Since s = iVr + p and p = 0 is assumed to 

obtain (2.15), this implies that r(m) = 0 in (2.15). In other words, the retiming value 

of the reference node is 0 in this formulation. 
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The translation of Lemma 2.6 to the retiming context is that (2.15) has a solution if 

and only if Bw = Bwy holds. This implies that the number of delays on any loop in G 

remains unchanged during retiming, as noted in [27]. If Bw = Bwy holds, (2.15) has 

exactly one solution for r^, which is given by 

rfi = (AflA^)-'Afi(w-wr). (2.16) 

In addition to the condition Bw = Bwr, there is also the practical condition that the 

number of delays on an edge in the retimed graph must be nonnegative. This condition 

can be written as wr > 0. The condition for a valid retiming from G to Gr are 

1. Bw = Bwr 

2. wr > 0. 

2.3.3    Bit-Serial Scheduling 

In this section, a scheduling formulation is developed where the target architecture is a 

bit-serial architecture. This formulation, which is similar to the formulation in Chap- 

ter 6 of [50], has the same general form as the retiming and the bit-parallel scheduling 

formulations in Sections 2.3.1 and 2.3.2. 

A bit-serial operator is often represented using a timing diagram such as the one in 

Figure 2.4. Let the execution of operator A in this figure begin at time TA- The first 

bit of each of the inputs x\, x2, and X3 arrives at time units TA + t(xi), TA + t(x2), and 

TA + £(2:3), respectively. The first bit of each of the outputs yi and y2 is produced at 

time units TA + t{y\) and TA + t(y2), respectively. In other words, the timing diagram 

gives the relative differences between the timing of the input and output samples of the 

operator. 

25 



Figure 2.4: The timing diagram for the bit-serial operator A. 

Example 2.3 For the bit-serial adder in Figure 2.5(a) which computes F = A + B, the 

timing diagram is shown in Figure 2.5(b). Note that W is the wordlength. 

■ F A 
B + D 

W/+0 ? 

0 

D 
J&- 

(a) (b) 

Figure 2.5:   (a) The architecture for a bit-serial adder for wordlength of W.   (b) The 
timing diagram for this architecture. 

The constraints for the bit-serial scheduling problem can be derived using the timing 

diagram. Consider the edge u A v with wT(e) delays in Figure 2.6. The output of 

iteration / of u is used as the input of iteration I + wT{e) of v. Let the /-th iteration 

of nodes u and v begin execution at time units Wl + p(u) and Wl +p(v), respectively, 

where W is the data wordlength and p(u) and p(v) are the time partitions to which the 

nodes are scheduled to execute such that 0 < p(u),p(v) <W -I. The output of the /-th 

iteration of u is available at Wl +p{u) + t{u) and the output of the I + tur(e)-th iteration 

of v is consumed at W(l + wr{e)) +p(v) + t{v), so the result must be stored for 

6(e) = W(l+wr(e))+p(v) + t{v)-[Wl+p{u)+t{u)] = Wwr{e)-{t{u)-t(v))+p(v)-p(u) 

clock cycles. 
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u   t(u> 
7Wr(e) ^v 

Figure 2.6: An edge u A- v with wr(e) delays. 

This equation can be written for all \E\ edges of the graph simultaneously according 

to 

b = Wwr - (tB - t„) - ATp, (2.17) 

where 

• A is the incidence matrix for the graph. 

• p is the time partition vector which assigns node i to the time partition pi where 

0<Pi < W -\. 

• tu is defined such that tUi is the value t(-) at the source of edge i in the graph. 

• t„ is defined such that tVi is the value t(-) at the sink of edge i in the graph. 

• wr contains the number of delays on each edge of the retimed DFG. 

• b contains the number of serial delays on each edge of the hardware implementa- 

tion. 

The bit-serial folding equation (2.17) operates on the retimed DFG Gr. Substituting 

(2.14) into (2.17) results in 

b = Ww - (t„ - t„) - AT(p + Wr). 

Combining r and p using s = p + Wr results in 

Ars = Ww - (t„ - t„) - b. 
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This equation can be rewritten as 

A]JsR = Ww - (tu - t„) - b, (2.18) 

where AR and sR are defined as in (2.8) and (2.9), and the scheduling value for the 

reference node is s(m) = 0. 

Using the same argument as in Lemma 2.6, it can be shown that the bit-serial schedul- 

ing equation (2.18) has a solution if and only if B(Ww - (tu - t„)) = Bb. The equation 

B(Ww - (t„ - t,,)) = Bb states that the sum of the serial delays in any loop of the 

hardware implementation is the same for any valid serial delay vector b. In addition, 

the sum of the number of serial delay elements of all edges and latencies associated with 

all nodes in a loop is the same as the product of the word-length and the number of loop 

delay elements. 

A second constraint, b > 0, exists because a connection in hardware cannot have a 

negative number of delays. The constraints for a valid bit-serial schedule are 

1. B(^w-(tu-t„)) = Bb 

2. b>0 

The value of the schedule vector s can be found using 

sR = {ARAT
R)-

1AR(WY, - (tu - t„) - b). (2.19) 

2.4    Generating All Scheduling and Retiming Solutions 

2.4.1    Generating All Bit-Parallel Scheduling Solutions 

Based on the two constraints B(ATw - du) = Bf and f > 0, all scheduling solutions for a 

strongly connected DFG can be generated. A systematic technique for generating these 
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solutions is presented in this section. 

Recall that B is the fundamental loop matrix which can be expressed as B = 

C | L ], where C is an (\E\ - \V\ + 1) x (|V| - 1) matrix and L is an (\E\ - 

|V| + l)x|£;|-|V| + l) lower triangular matrix with ones on the diagonal. The columns 

of C correspond to the branches of the spanning tree of G which is chosen before Algo- 

rithm FFL is used to find B, and the columns of L correspond to the links of G. The 

rows of B correspond to {\E\ - \V\ + 1) linearly independent loops in G. 

The algorithm for generating all scheduling solutions requires an interval to be written 

for the folded weight of each branch of G and an equality to be written for the folded 

weight of each link of G. The interval for the folded weight of a branch gives the range of 

possible values for the number of folded delays for this branch in the folded architecture. 

The equality for the folded weight of a link gives an expression for the number of delays 

for the link in the folded architecture. Using these intervals and equalities, code can be 

constructed to generate all possible scheduling solutions. 

To determine these intervals and equalities, the elements of the fundamental loop 

matrix are examined one-by-one in a row-by-row manner, starting at the top-left of the 

matrix. Each time a "1" is encountered in the C submatrix of B such that this "1" is the 

first "1" encountered in its column, an interval is specified for this branch. This interval, 

which represents the range for the number of folded delays for the branch in the folded 

architecture, takes into account the intervals and equalities previously determined in the 

row-by-row scan of B. 

Assume that the first "1" in column n of C is in row m, i.e., bmn = 1 and btn = 0 for all 

/ < m. Let bj denote any row of B such that bkn = 1, i.e., loop (A;) is a fundamental loop 

that contains the edge n. Since bmn is the first "1" in column n, m < k < \E\ - |V| + 1 
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must hold, i.e., bkn is in row m or in a row which is below row m. From Bf = B(JVw-du), 

we get 

b^f = b^(7Vw-du)^^6^=b[(Arw-du)=>/n+    £    bkjf3 = bT
k(Nw-du). 

J'e£ jeE-{n} 
(2.20) 

Let D denote the set of edges encountered before reaching the element bmn in the row- 

by-row scan of B. Mathematically, D is the set of edges j such that there exists an 

element &„■ = 1 such that j + (\E\ - 1)* < n + {\E\ - l)m. Using D, we can rewrite (2.20) 

as 

fn + J2b^fj+       £       V,/j = b£(ATw-du). (2.21) 
jeD jeE-D-{n} 

The intervals and equalities for the edges in the set E - D - {n} have not yet been 

determined; however, we do know from f > 0 that T,jeE-D-{n} bkjfj > 0. Using this in 

(2.21) results in 

/n + £^/^bA-(Ww-du). 

Using this along with f > 0 specifies the interval for /„ 

0 < /„ < b£(ATw - du) - £ bkiSj, (2.22) 
jeD 

which must hold for all k such that bkn — 1. 

Because the matrix L in B = is lower triangular with ones on the C    |    L 

diagonal, the diagonal element of row m, lmm, is always the first "1" encountered in 

column m of L during the row-by-row scan of B. In addition to using Zmm to denote this 

element, it can also be denoted as bmn where n=\V\-l + m. When bmn is encountered 

in the row-by-row scan of B such that n = |V| - 1 + m, an equality is written for fn 

based on the equation b£f = b£(iVw - du). This equality, which uses the fact that 

the intervals and equalities have already been determined for all edges in loop(m) except 
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edge n, is 

fn = bl(Nw-du)-Ytbmjfj. 
jeD 

(2.23) 

To summarize the above discussion, the matrix B is scanned in a row-by-row manner 

starting with 6U. When bmn = 1 is encountered, if bmn is the first "1" in its column 

of C, the interval in (2.22) is written for all k such that bkn = 1. When bmn = 1 is 

encountered where n = \V\ - 1 + m, the equality in (2.23) is written. 

The intervals for the |V| - 1 branches of G are denoted as lj for 1 < j < \V\ - 1. 

An algorithm for writing these \V\ - 1 intervals for the branches and the |£| - |V| + 1 

equalities for the links is given below. At any point in this algorithm, D is the set of 

edges in G whose intervals or equalities have previously been determined. 

Algorithm IE (Intervals and Equalities) 

D = {}; 
FOR (m = 1 TO \E\ - \V\ + 1) 

{ 
FOR (n = 1 TO \E\ - 1) 

{ 
IF (bmn = 1 AND bkn = 0 VA; < m) 

{ 
IF (1 <n< \V\ -1) 

In = [Q,mm{a(m,n),a(m + l,n),o{\E\ - |V| + l,n)}]; 
D*- D + {n}; 

ELSE 

/„ = b^(ATw - du) - J2jeD bmjff 
D<r- D + {n}; 
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where 

a{K n) = i b* (Ww - du) - EjeD hjfj   if bk = 1 
| oo otherwise 

From the intervals and equalities, code can be written to enumerate all possible 

scheduling solutions. The general structure of the code is: 

1. Write FOR loops for the intervals and write assignment statements for the equali- 

ties in the same order that these intervals and equalities are generated in Algorithm 

IE. 

2. Test the link weights for non-negativity. If the link weights pass this test, the edge 

weights represent a valid scheduling solution. 

This technique generates all possible scheduling solutions because the FOR loop for 

branch m assigns fm every integer value which is legal under the constraints Bf = 

B(Nw - du) and f > 0, while taking into consideration the values of fc which are 

already contained in a FOR loop or an assignment statement. 

Example 2.4 In this example, we find all scheduling solutions for the DFG in Figure 2.7 

assuming an iteration period of 4 and assuming that the computation time for each node 

is unity. 

JVw-d„=[-l   3   -1    -1    -1    -1-13   3 
T 
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Figure 2.7: The data-flow graph used in Example 2.5. 

and 

Bf = B(7Vw - du) 

110 0 0 10 0 0 
0 110 0 0 10 0 
0 0 10 10 0 10 
0   0   0   10   0   10   1 

/(I) 
/(2) 
/(3) 
/(4) 
/(5) 
/(6) 
/(7) 
/(8) 

L/(9) 

Using Algorithm IE gives the intervals and equalities 

Zi = [0,l] D = {1} 
l2 = [0A-fi] D = {1,2} 
fe = I-/1-/2 £» = {1,2,6} 
23 = [0,1-/2] £» = {1,2,3,6} 
h = I-/2-/3 £» = {1,2,3,6,7} 
^5 = [0,1-/3] £» = {1,2,3,5,6,7} 
h = I-/3-/5 £» = {1,2,3,5,6,7,8} 
I4 = [0,1-/7] £> = {1,2,3,4,5,6,7,8} 
h = l-JA~h D = E. 

The code for finding all scheduling solutions is 

for (fl = 0;   fl <= 1;  fl++) 
for (f2 = 0;   f2 <=  1 - fl;   f2++) 
{ 

f6 = 1 - fl - f2; 
for (f3 = 0;  f3 <= 1 - f2;  f3++) 
{ 

f7 = 1 - f2 - f3; 
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Table 2.1: The twelve valid scheduling solutions for the DFG in Figure 2.7. 

sol'n # h h h h h h h h h Si S2 53 s4 S5 56 
1 0 0 0 0 0 1 1 1 0 0 -2 0 -1 2 
2 0 0 0 0 1 1 1 0 0 0 -2 -1 2 
3 0 0 1 0 0 1 0 0 1 0 -2 0 2 
4 0 0 1 1 0 1 0 0 0 0 -2 0 3 
5 0 1 0 0 0 0 0 1 1 0 -1 0 2 
6 0 1 0 1 0 0 0 1 0 0 -1 0 3 
7 0 1 0 0 1 0 0 0 1 0 -1 2 0 2 
8 0 1 0 1 1 0 0 0 0 0 -1 2 0 3 
9 1 0 0 0 0 0 1 1 0 0 -1 2 1 0 3 
10 1 0 0 0 1 0 1 0 0 0 -1 2 2 0 3 
11 1 0 1 0 0 0 0 0 1 0 -1 2 2 1 3 
12 1 0 1 1 0 0 0 0 0 0 -1 2 2 1 4 

for (f5 = 0;  f5 <= 1 - f3;  f5++) 
{ 

f8 = 1  - f3 - f5; 
for (f4 = 0;  f4 <= 1 - f7;  f4++) 
{ 

f9 =  1 - f4 - f7; 
if (f6 >= 0 AND f7 >= 0 AND f8 >= 0 AND f9 >= 0) 

print the values of fl through f9 and si through s6 

} 

There are twelve scheduling solutions for this DFG. The scheduling vector sR can be 

computed from the folded edge vector f using (2.12). Using node 1 as the reference node, 

the folded edge weights and the scheduling values for the nodes are listed in Table 2.1. 

Once all possible f vectors have been found and the corresponding s vectors have been 

computed using (2.12), the r and p vectors can be found from s (recall that s = p + iVr) 

using r = [-^J and p = s - ATr. It can be shown that these expressions for r and p result 

in 
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• 0 < p < N — 1. This means that pi is indeed a time partition satisfying 0 < pi < 

N-l. 

• wr > 0 and Bw = Bwr. This means that r is a valid retiming solution of G. 

To summarize, the following four steps can be used to find all valid schedules for a 

strongly connected DFG: 

1. Find all vectors f such that f > 0 and Bf = B(iVw - du). 

2. Compute s using (2.12) and s{m) = 0, where m is the reference node. 

3-r=L*J. 

4. p = s — JVr. 

These four steps give the valid schedules for G. The retiming vector r corresponds 

to a valid retiming solution for G, and the elements of the partition vector p satisfy 

0<Pi<N- 1. 

For each legal folding vector f, the technique in this section finds exactly one schedule 

s, which contains information about the time partitions p and the retiming values r of 

the nodes. However, there are actually N schedules which map the DFG to a folded 

architecture which has f delays on its edges. We call these N solutions equivalent sched- 

ules, and we call the solution found using Step 2 above the fundamental schedule s of the 

folding vector f. The N equivalent schedules are s + fcl for 0 < k < N — 1. Replacing 

s by s + kl has two effects. First, the switching instance Nl + j (0 < j < N — 1) in 

the folded architecture becomes Nl + ((j' + k)modN). Second, if scheduling is viewed 

as preprocessing the DFG by retiming (finding r) and then assigning time partitions 

(finding p), the preprocessed DFG may change because r may change. A nice property 
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of the technique presented in this section is that it finds the fundamental schedule s for 

each folding vector f, and the N equivalent schedules are implicitly known to be s + kl 

for 0 < k < N - 1. 

2.4.2    Generating All Retiming Solutions 

Since retiming is a special case of scheduling, the techniques in Section 2.4.1 for gen- 

erating all scheduling solutions can also be used to generate all retiming solutions by 

replacing f with wr and letting N = 1 and du = 0. 

Example 2.5 In this example, we generate the edge intervals and equalities for the graph 

in Figure 2.7. The fundamental loop matrix for this graph is given in (2.1), the weight 

vector is 

w = o  i o o o o o  i  ilT 

[I 1111      .  The intervals and equalities are generated in the following 

order using Algorithm IE. 

Xi = [0,l] D = {1} 
Zb = [0,l-türi] £> = {1,2} 

wr6 = 1 - tor, - wT2 D = {1,2,6} 
13 = [0,1 - wT2] D = {1,2,3,6} 

wr7 = 1 - wr2 - uv3 D = {1,2,3,6,7} 
I5 = [0,1 - wr3] D = {1,2,3,5,6,7} 

wTs = I - wT3 - wrs     D = {1,2,3,5,6,7,8} 
14 = [0,1 - wT7] £» = {1,2,3,4,5,6,7,8} 

wrg = 1 - wu - wrr D = E 

Using these intervals and equalities, the code which generates all retiming solutions 
for the DFG in Figure 2.7 is given below. Note that xi is used to represent wTi. 

for (xl = 0;   xl  <= 1;   xl++) 
for (x2 = 0;  x2 <= 1 - xl;  x2++) 
{ 

x6 =  1 - xl - x2; 
for (x3 = 0;  x3 <= 1 - x2;  x3++) 
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x7 = 1 - x2 - x3; 
for (x5 = 0; x5 <= 1 - x3; x5++) 

{ 
x8 = 1 - x3 - x5; 
for (x4 = 0; x4 <= 1 - x7; x4++) 

{ 
x9 = 1 - x4 - x7; 
if (x6 >= 0 AND x7 >= 0 AND x8 >= 0 AND x9 >= 0) 

print the values of xl through x9 and rl through r6 

} 
} 

} 

There are twelve retiming solutions for the DFG. The retiming vector r is computed 

from the retimed weight vector wr using (2.16) and r(l) = 0, where node 1 is the refer- 

ence node. The retimed edge weights and the retiming values for the nodes are listed in 

Table 2.2. 

If a DFG is not strongly connected, it is possible to add edges to the DFG to make it 

strongly connected so all retiming solutions can be generated. Consider the biquad filter 

in Figure 2.8(a). This graph is not strongly connected because, for example, there is no 

path from the output node to the input node. To make this graph strongly connected, 

it can be modified by adding an edge from the output node to the input node as shown 

in Figure 2.8(b). The modified graph has a new loop IN -» OUT -> IN which has one 

delay. This loop forces the latency of the DFG to be one cycle. Using the techniques 

presented in this section, we find that there are 224 retiming solutions for the DFG in 

Figure 2.8(b). 

As another example, consider the correlator in Figure 2.9 which is used to demonstrate 

retiming in [27]. Using the techniques presented in this section, 143 retiming solutions 

can be found for this DFG. This result was also reported in [30]. 
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Table 2.2: The twelve valid retiming solutions for the DFG in Figure 2.7. 

sol'n # wn wr2 Wr3 wu Wrs Wr6 Wr7 ">r8 «v9 
1 0 0 0 0 0 1 1 1 0 
2 0 0 0 0 1 1 1 0 0 
3 0 0 1 0 0 1 0 0 1 
4 0 0 1 1 0 1 0 0 0 
5 0 1 0 0 0 0 0 1 1 
6 0 1 0 1 0 0 0 1 0 
7 0 1 0 0 1 0 0 0 1 
8 0 1 0 1 1 0 0 0 0 
9 1 0 0 0 0 0 1 1 0 
10 1 0 0 0 1 0 1 0 0 
11 1 0 1 0 0 0 0 0 1 
12 1 0 1 1 0 0 0 0 0 

sol'n # n T2 rz n T5 re 
1 0 -1 0 -1 -1 0 
2 0 -1 0 0 -1 0 
3 0 -1 0 0 0 0 
4 0 -1 0 0 0 1 
5 0 0 0 0 0 0 
6 0 0 0 0 0 1 
7 0 0 0 1 0 0 
8 0 0 0 1 0 1 
9 0 0 1 0 0 1 
10 0 0 1 1 0 1 
11 0 0 1 1 1 1 
12 0 0 1 1 1 2 
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OUT IN 

Figure 2.8: (a) The biquad filter. This graph is not strongly connected, (b) A modified 
version of the biquad filter. This graph is strongly connected. 

(DC 
/ "      \ 

Figure 2.9: The correlator example which has 143 retiming solutions. 

2.4.3    Bit-Serial Scheduling 

Since the bit-serial scheduling formulation has the same form as the bit-parallel schedul- 

ing formulation, the techniques used to generate all bit-parallel scheduling solutions can 

be used to generate all bit-serial scheduling solutions by replacing f with b and replacing 

Nw - du with Wvr - (tu - t„). 

The values of r and p can be computed from s (recall that s = p + Wr) using r = [p^J 

and p = s — Wr. It can be shown that these expressions for r and p result in 

• 0 < p < AT — 1. This means that pi is indeed a time partition satisfying 0 < Pi < 

N-l. 

• wr > 0 and Bw = Bwr if tu > tv for all edges u A v as shown in Figure 2.6. This 
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means that r is a valid retiming solution of G when tu > tv for all e G E. 

Example 2.6 In this example, we generate all possible schedules for the bit-serial im- 

plementation of the third-order all-pole filter shown in Figure 2.10 assuming two's com- 

plement number representation, data wordlength is 8 (i.e., W = 8), and coefficient 

wordlength is 4- 

x(n)    -@  

&■ 

-1/4 

y(n) 

D 

x 

1/8 

©-^H 
1/2 D 

Figure 2.10: A third-order all-pole IIR filter. 

The first step is to determine the timing diagram for each operator. The circuit and 

timing diagram for an adder are given in Figure 2.5. The circuits and timing diagrams 

for multiplication by -1/4, 1/8, and 1/2 are given in parts (a), (b), and (c), respectively, 

of Figure 2.11. Using these sub-circuits, the timing diagram for the filter is shown in 

Figure 2.12 

The fundamental loop matrix is 

In addition, we have 

w = 

"U 

10 0 10 10 0 
0 10 0 1110 
0 0 10 0 111 

12 3 0 0 0 0 0 

1114 3 111 
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Figure 2.11: The circuits and timing diagrams for the three multipliers in Figure 2.10. 

and t„ = 0.  The equation B(Ww — (tu — t„)) = Bb is 

' 1   0 0   1   0   1   0   0 ' 2 
0   1 0   0   1110 b = 10 
0   0 10   0    111 20 

ualitics are 

Zi=[0,2] 
I» = [0,2-6i] 
be = 2 - bi - 64 
I2 = [0,10 - be] 
Z5 = [0,10 - 62 - be] 
b7 = 10 - b2 - 65 - 66 

X3 = [0,20-66-67] 
68 = 20 - 63 - be ■ -b7 

There are 6103 valid scheduling solutions. To avoid examining all of these solutions, 

let us examine only those solutions which use the minimum number of serial registers. 

The number of serial registers is 

D = max(&i, 62,63) + 64 + 65 + b6 + 67 + fa. 
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Figure 2.12: The timing diagram for the filter in Figure 2.10. The edge labels are shown 
in parentheses to avoid confusion with the timing values. 

The minimum number of registers for all 6103 valid scheduling solutions is £>mj„ = 20, 

and there are 330 solutions which use 20 registers. One solution that uses 20 registers is 

b   =    [0000028   10 ]T 

s   =    [o-3-12   -7   -15    -23 

r    =    [o-l    -2 

p   =    [ 0   5   4    1    1    1 

1    -2   -3 

T 

The complete architecture for this solution is shown in Figure 2.13.  This architecture 

uses 20 registers, not including the registers which are internal to the processing units. 

2.5    Bit-Parallel Scheduling with Resource Constraints 

When all of the schedules are generated for a DFG, this may include many schedules 

which require more hardware resources than are available for the implementation. In 

this section, we describe two methods for finding the schedules which satisfy a given 
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Figure 2.13: An architecture for the third-order all-pole filter. This architecture uses the 
minimum number of registers (20), not including the registers which are internal to the 
processing units. 

set of resource constraints. In the first method (the solution-save method), we generate 

all scheduling solutions and then save only the solutions which satisfy the resource con- 

straints. In the second method (the solution-generate method), we only generate those 

scheduling solutions which satisfy the resource constraints. 

2.5.1    The Solution-Save Method 

The number of hardware modules required by a scheduled DFG can be determined 

from p. For example, let mn be the number of multiplication operations scheduled to 

time partition n (0 < n < N - 1), and let an be the number of addition operations 

scheduled to time partition n. Then the number of multipliers required by the schedule 

is m = maxo<„<AT_1{mn} and the number of adders is a — maxo<n<Ar_i{an}. 
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Example 2.7 In this example we find all scheduling solutions which require 1 multiplier 

and 1 adder for the biquad filter in Figure 2.8(b) assuming an iteration period of N — 4 

and assuming that addition and multiplication require 1 and 2 units of time, respectively. 

Nodes 1, 2, 7, and 8 are addition operations and nodes 3, 4, 5, and 6 are multiplication 

operations. 

The fundamental loop matrix is 

100000010000 
011000001000 

B= 000001110100 
000100001010 
000010010101 

and B(4w -du)=    20   3   4   7. The intervals and equalities are 

Ii = [0,2] 
h = 2 - h 
X2 = [0,0]^/2=0 
l3 = [0,0-/2]=>/3 = 0 
h = 0 - h ~ h => h = 0 
2"e = [0,3-/8] 
l7 = [0,3-/6-/8] 
/io = 2 - /e - h - h 
X, = [0,4-/9] 
/n = 4 - fA ~ h 
Is = [0,7-/8-/io] 
/12 = 7 - /5 - /8 - /10 

There is a total of 625 valid scheduling solutions for this example; however, only 6 of 

these solutions use only 1 adder and 1 multiplier. Tables 2.3 and 2.4 give the details of 

these solutions, and the DFGs for these six solutions are given in Figure 2.14- 

Example 2.8 Consider the 4-stage pipelined 8-th order all-pole lattice filter in Fig- 

ure 2.15. Edge 11 has been added to this filter to make it strongly connected. For 

the iteration period N = 2, this filter has 450 scheduling solutions, and 99 of these 

schedules use 2 adders and 2 multipliers.   Of these 99 schedules, the minimum possi- 
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Table 2.3: The f and s values for the six valid scheduling solutions for the biquad filter 
which use 1 adder and 1 multiplier for an iteration period of 4. 

sol'n # h h h h h h h h h /io hi /12 

1 0 0 2 3 1 1 0 0 2 3 
2 0 0 3 2 1 1 0 0 1 4 
3 0 0 3 6 1 1 0 0 1 0 
4 0 0 1 3 2 0 0 0 3 3 
5 0 0 3 1 2 0 0 0 1 5 
6 0 0 3 5 2 0 0 0 1 1 

sol'n # s\ S2 S3 H S5 ■S6 •57 S8 

1 0 -1 -3 -5 -2 -4 2 
2 0 -1 -3 -4 -2 -5 2 
3 0 -1 -3 -4 -2 -1 2 
4 0 -1 -3 -6 -1 -4 2 
5 0 -1 -3 -4 -1 -6 2 
6 0 -1 -3 -4 -1 -2 2 

Table 2.4: The r and p values for the six valid scheduling solutions for the biquad filter 
lich use 1 adder and 1 i nultiplier for an iteration period of 4 
sol'n # n T2 7*3 n rs Tfi H r» Pi P2 P3 PA P5 P6 Pi P8 

1 0 -1 -1 -2 -1 -1 0 0 0 3 3 2 0 2 
2 0 -1 -1 -1 -1 -2 0 0 0 3 0 2 3 2 
3 0 -1 -1 -1 -1 -1 0 0 0 3 0 2 3 2 
4 0 -1 -1 -2 -1 -1 0 0 0 3 2 3 0 2 
5 0 -1 -1 -1 -1 -2 0 0 0 3 0 3 2 2 
6 0 -1 -1 -1 -1 -1 0 0 0 3 0 3 2 2 
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Figure 2.14: The six scheduling solutions for the biquad filter which use 1 adder and 1 
multiplier. The number in parentheses next to a node is the time partition to which the 
node is scheduled. 

ble number of registers required for the implementation is 10, and only 2 of these 99 

T 
■1 schedules use 10 registers.    These schedules are s =     0   3    1    —2    1    4    2 

r iT 
and s = 03 1—2 2530. The minimum number of registers is computed 

using the techniques in [46] with the modification that the results reported here assume 

that for a processor that is pipelined by Pu stages, the Pu pipelining registers cannot be 

used by output samples from other processors, while the results in [46] allow one pipelin- 

ing register to be shared by other processors. For the iteration period N = 4, the filter in 

Figure 2.15 has 910910 scheduling solutions, and 10083 of these schedules use 1 adder 

and 1 multiplier. Of these 10083 schedules, the minimum possible number of registers 

required for the implementation is 11, and 21 of these 10083 solutions use 11 registers. 

2.5.2    The Solution-Generate Method 

This section describes a technique for exhaustively generating only the bit-parallel sched- 

ules which can be implemented on a given set of hardware resources.  Using this tech- 
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Figure 2.15: The 4-stage pipelined 8-th order all-pole lattice filter. The edge labels are 
in parentheses to avoid confusion with the node labels. One possible spanning tree is 
shown in solid lines. 

nique, we can avoid.generating those schedules which use more resources than are avail- 

able, and this allows us to generate the desirable schedules in considerably less time. 

The following theorem is needed so we can construct B in a manner that allows us to 

perform exhaustive bit-parallel scheduling with resource constraints. 

Theorem 2.7 In Algorithm FFL, let vj be the node that the link Ik is incident from. If 

vj is in GR , then there are no branches in loop(k) which are also in (G—GR). Ifvj is in 

{G — GR), then there are branches in loop(k) which are in (G — GR), and these branches 

form an elementary directed path which xue shall denote as VQ -V vi -4- • • •   -+1 u,/_i -4 vj. 

Proof: The loop denoted as loop(Ar) in Algorithm FFL has the form of Figure 2.16(a) 

or 2.16(b), where VR is the root node of the spanning tree and VIN is a node in GR . 

Recall from Theorem 2.5 that the form in Figure 2.16(b) results from vj -4- vix ~» 

VCOMMON ~» VR ~> vcoMMON ~~* vj- Both forms of loop(/c) can be generalized as the 

loop in Figure 2.16(c), where V[^, Vy, and ps are in GR . The proof has two cases, 

which take into account whether or not node vj is in GR . 

Case I: vj is in G{
R
]. If the path pA in Figure 2.16(c) has any edges in (G - G^), then 

a subpath vi ~> v2 of pA must exist in (G - G^R), where u2 is in GR\ The last edge in 

v\ ~» U2, i.e., the edge that is incident into v2, cannot be a link because l^ is the only 
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(a) 

(   vCOMj 

(b) (c) 

Figure 2.16: (a) One form of loop(fc): vj 4 vIN ~» vR ~> uj. Link lk is in (G-G$) and 

path p2 is in GR. (b) The other form of loop(fc): vj 4 u/w ~> VQOMMON ~> "/• Link 

/it is in (G - Gß ) and path p4 is in GR. (c) Equivalent loop(/c): vj 4 «/# ~* wy ~> uj. 

Link /fe is in (G-GR) and pathps is in GR. The forms in (a) and (b) can be generalized 
to the form in (c). 

link which is in loop(Ar) and in (G - G$) (recall that loop (A;) is in G$ UGTU lk). The 

last edge in vi ~> u2 cannot be a branch because Lemma 2.3 says there is no branch in 

(G - GR) which is incident into a node in GR\ Therefore, if vj is in G%\ pA can have 

no edges in (G - G^'), and there are no branches that are in loop(/c) and in (G - G^). 

Case II: v., is in (G - G{
R
]). The edge incident into vj in loop(Ä) is in (G - G{

R
]) (if 

not, vj would be in GR), and this edge is a branch because lk is the only link which is 

in loop(A;) and in (G - Gfc). We denote the branch in loop(A;) which is incident into vj 

as vj_i 4 vj. Similarly, ifvj-i is in (G - G{
R
]), then branch bj-i exists in (G - G^) 

to form the path u/_2 4' «./_! 4 vj. On the other hand, if vj-i is in G^, then 

by using Case I of this proof, we know that the path vy ~> vj-i can have no edges 

,(*) in (G - GR ).  Continuing this argument, we see that when vj is in (G - GR ), there 

are branches which are in loop(fc) and in (G - GR ), and these branches form the path (*)> 

u0 -» Vi 
&./ 

-> Vi —V • • •   —>  uj-i -} uj. D 
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As described in Section 2.2.3, we construct the fundamental loop matrix B by letting 

loop(/c) from Algorithm FFL be the A>th row of B. The edges in the graph are numbered 

such that the first (|V| - 1) columns of B correspond to the branches of the spanning 

tree of G, and the remaining (\E\ - |V| + 1) columns correspond to the links. From 

Theorem 2.7 we know that if there are branches in loop(A;) which are in (G — G^ ), then 

these branches form the elementary directed path VQ -V v\ -4 • • • J-+x vj-i -4 vj. In 

other words, if loop(fc) contains branches which have not appeared in previous loops, then 

these branches form a path. These branches are assigned to the next available columns 

of B in the order that they appear in the path VQ -V v\ -4 ■ ■ • -41 vj^i -4 vj. The link 

Ik is assigned to the (| V\ — 1 + fc)-th column of B. By constructing the fundamental loop 

matrix in this manner, it still has the form given in (2.3); however, it now allows us to 

use Algorithm IE to determine the schedule values of the nodes directly. 

The interval ln for the scheduling problem is found by enforcing (2.22) for all k 

such that 6jt„ = 1. Assume that the edge n is incident into node vn and incident from 

node un, i.e., un -> vn. From (2.7), the expression for the n-th folded edge weight is 

/„ = Nwn — dUn + sVn — ,sUn. Substituting this into the interval for fn gives 

0 < Nwn - dUn + aVn - sUn < b[(Afw - du) - £ hjSj 
jeD 

for all k such that bkn = 1- Solving for sVn gives 

-Nwn + dUn + sUn < sVn < -Nwn + dUn + sUn + bJ{Nw - du) - ^ hjfj 
jeD 

for all k such that 6/tn = 1. 

To avoid confusion with the interval for /„ (recall that we denoted this as In), the 

interval for sVn is denoted as 1%. This notation specifies that 1% is an interval for the 

scheduling value of the node that edge n is incident into. Let otn = —Nwn + dUn + sUn. 
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Then the interval Tn is simply the interval ln from Algorithm IE with an added to the 

lower and upper bounds. We shall denote this as Tn = ln + an. 

Using the technique described in this section for constructing the fundamental loop 

matrix B, Algorithm IE can be used to determine the intervals In for the folded edge 

weights, and the intervals for the scheduling values for the nodes can be found using 

Xv
n=ln + an. 

Example 2.9 In this example, all possible scheduling solutions are generated for the 

DFG in Figure 2.17 for an iteration period of A by generating the solutions for s directly. 

The computation time for each node is assumed to be unity. Using the technique described 

in this section for constructing B results in 

B 

110 0 0 10 0 0 
0 110 0 0 10 0 
0 0 110 0 0 10 
0 0 0 0 10 10 1 

(2.24) 

Notice that the edge labels in Figure 2.17 are different than those used in Figure 2.7. The 

labels have been changed so the column numbers of B in (2.24) correspond to the edge 

labels in Figure 2.17. Using B(Nw - du) = l4xi, the intervals are given in Table 2.5. 

Note that in this table fn = Nwn - dUn + sVn - sUn has been used to simplify the upper 

bounds of the 1% intervals. 

Figure 2.17: The graph scheduled in Example 2.9. 
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Table 2.5: The intervals for Example 2.9. 

n -Ln an ^ 
1 
2 
3 
4 
5 

[0,1] 
[0,l-/i] 
[0,1-/2] 
[0,1-/3] 
[0,1-/7] 

1+5! 
-3 + 53 
I + S2 
I+S5 
I + S3 

[1,2] 
[-3 + 53,-1] 

[l + 52,-l + 53] 
[1 +55,3 + S2] 
[1 + 53,3 + S5] 

The code for this example is 

for (s3 = 1; s3 <= 2; s3++) 
for (s2 = -3 + s3; s2 <= -1; s2++) 
for (s5 = 1 + s2; s5 <= -1 + s3; s5++) 
for (s4 = 1 + s5; s4 <= 3 + s2; s4++) 
for (s6 = 1 + s3; s6 <= 3 + s5; s6++) 

{ 
Compute link weights.     If all positive,  print si through s6 

The twelve solutions for s generated from this code are the same as those listed in Ta- 

ble 2.1. 

By determining the values of the schedule vector directly rather than first determining 

the folding vector and then computing the schedule vector, we can generate only those 

schedules which can be executed using a limited number of hardware modules. This is 

done using a programming technique that avoids the solutions which use more resources 

than are available. For each operation type (e.g., addition or multiplication), an array 

of N data elements is used such that there is one element for each time partition from 

0 to N — 1. Each data element contains the number of operations of a given type that 

is currently scheduled to that time partition. Each data element also keeps track of 

the next time partition in which the hardware resources for that particular operation 
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type are not fully utilized. By keeping track of this information, when we generate a 

new schedule by incrementing the schedule value for a node, the node is scheduled to a 

time partition in which the hardware resources for the operation are not already fully 

utilized. The end result is that we do not generate the schedules that use more resources 

than are available, so we can generate all scheduling solutions for a given set of resource 

constraints much more quickly than if we find all possible schedules and keep only those 

schedules which satisfy the resource constraints. 

The advantages of including the resource constraints are demonstrated using the 

fifth-order wave digital elliptic filter shown in Figure 2.18.   We assume that addition 

D D 

OUT 

Figure 2.18: The fifth-order wave digital elliptic filter. The branches of the spanning tree 
used in Algorithm FFL is shown with solid lines, and the links are shown with dotted 
lines. 

and multiplication require 1 and 2 units of time, respectively, and that hardware adders 

and multipliers are pipelined by 1 and 2 stages, respectively. The results of exhaustively 

generating the scheduling solutions without considering resource constraints are shown 

in Table 2.6. The results of exhaustively generating the scheduling solutions which can 

be implemented on a given number of hardware adders and multipliers are shown on 

the left side of Table 2.7. From these tables, we can see that the time it takes to 

exhaustively generate only the scheduling solutions which satisfy a given set of resource 
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Table 2.6:   The results of exhaustively scheduling the filter in Figure 2.18 using the 
techniques presented in Section 2.4.1. 

iter period    # sched solutions    CPU time (sec) 
16 
17 
18 

9900 
4669095 

580432280 

0.0342 
16.2 
2020 

Table 2.7: The results of exhaustively scheduling the filter in Figure 2.18 for a given set 
of resource constraints using the techniques presented in Section 2.5.2. The left part of 
the table considers scheduling to the minimum possible number of adders and multipliers 
for the given iteration period, and the right part considers scheduling to the minimum 
number of adders, multipliers, and registers. 

iter 
period 

resources 
(add,mult) 

# solns 
CPU time 

(sec) 
resources 

(add,mult,reg) 
# solns 

16 (3,1) 77 0.00288 (3, 1, 7) 21 
17 (2,1) 98 0.0518 (2, 1, 7) 73 
18 (2,1) 131983 11.1 (2, 1, 7) 40723 
19 (2,1) 33948842 1700 (2, 1, 7) 3056246 

constraints is orders of magnitude faster than the time it takes to exhaustively generate 

all scheduling solutions. The expressions in [46] can be used to compute the number of 

registers required by a given schedule. The results of this are shown on the right side 

of Table 2.7. Note that these results assume that internal pipelining registers cannot 

be shared between processors, while the results in [46] assume that internal pipelining 

registers can be shared between processors. 

2.6    Conclusions 

Formulations have been presented in this chapter for the bit-parallel and bit-serial 

scheduling problems, and we have shown that the retiming formulation introduced in 

[30] is a special case of our bit-parallel scheduling formulation. Techniques have been 

developed and demonstrated for exhaustively generating all unique retiming and schedul- 
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ing solutions for a strongly connected DFG. These techniques allow a circuit designer to 

explore the space of possible implementations. 

In addition to the technique for exhaustively generating all unique bit-parallel schedul- 

ing solutions, a technique was also developed for exhaustively generating only the bit- 

parallel scheduling solutions which satisfy a given set of resource constraints. Our results 

indicate that this technique can generate schedules in CPU times that are greater than 

two orders of magnitude faster than generating all solutions. 

One advantage of the formulations presented in this chapter is that they allow us to 

understand how retiming and scheduling are similar and that retiming is an important 

part of scheduling. Specifically, we show that retiming is a special case of scheduling, 

and we include retiming in our scheduling formulations to make them general and to 

make visible the role of retiming during scheduling. 

The numbers reported in Tables 2.6 and 2.7 show some scheduling results for the fifth- 

order wave digital elliptic filter. Since this filter is often used to demonstrate scheduling 

techniques, the numbers in these tables provide some benchmarks for gauging the effec- 

tiveness of scheduling algorithms. These numbers indicate that the number of schedules 

increases dramatically as the difference between the iteration period and the iteration 

bound becomes larger. Therefore, for practical applications, our exhaustive scheduling 

techniques are most useful when the iteration period is at or near the iteration bound. 
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Chapter 3 

Register Minimization in Folded 
Architectures 

3.1    Introduction 

In this chapter, expressions are derived for the minimum number of registers required 

to implement a statically scheduled DFG. Two cases are considered, namely, the cases 

where retiming is and is not allowed to be perfomed on the scheduled DFG. 

We begin with a motivating example. After the DFG has been scheduled, specifica- 

tions for the communication paths between hardware modules can be determined using 

systematic folding techniques [28]. Consider the multiply-add operation in Figure 3.1(a), 

which is an algorithm DFG describing y(n) = au(n) + v(n). Assume this multiply-add 

is part of a larger DFG which is to be implemented in hardware with an iteration period 

of 10, i.e., each node in the algorithm DFG will be executed by the hardware exactly 

once every 10 time units. If the multiply operation is executed by one-stage pipelined 

hardware module HM at time units 10/ + 2, and the add operation is executed by hard- 

ware module HA at 10/ + 8 for integer / iterations, then the connection between the 

multiplication and addition operations in Figure 3.1(a) is mapped to the data path in 

Figure 3.1(b) (details of how this data path specification is derived are provided in Sec- 
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tion 3.2.2). Upon examination of Figure 3.1(b), one observes that at any given time, 

no more than one of the five delays labeled "5D" between EM and HA is storing a 

word of data that will actually be consumed by HA- TO avoid the inefficient architec- 

ture that would result from direct implementation of Figure 3.1(b) in silicon, memory 

management is used in high-level synthesis tools to derive efficient data paths between 

processing modules. 

u(n) 

v(n)—(£}— y(n) 

(a) 

10/+8 

 ; (b) 

Figure 3.1: (a) Algorithm DFG describing y(n) = au{n) + v(n). (b) Data path specifi- 
cation derived from the algorithm DFG for an iteration period of 10. 

Memory management consists of choosing the type of registers, number of registers, 

and allocation of data to these registers. The type of registers is usually dictated by 

the architecture model used. Throughout this chapter, the term "register" is used to 

describe a storage location capable of storing one word of data. We use the term "memory 

model" for a general rule which describes how data can be allocated to the registers. For 

example, one memory model might force each functional unit in the architecture to store 

its output samples in a set of registers dedicated to only that functional unit, while 

another memory model might lift this restriction and allow all of the functional units 

to share a common set of registers. Naturally, the memory model affects the number 

of registers and the allocation of data to the registers.   In this chapter, we compute 
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the minimum number of registers required for a statically scheduled DFG under various 

memory models. The allocation of the data to registers is an NP-complete problem for 

which heuristic algorithms have been suggested [51, 52, 53]. 

Techniques for computing the minimum number of registers required by a statically 

scheduled DFG have been considered in the past. The left-edge algorithm has been 

used to find the minimum number of registers and allocate data to these registers [54]. 

The life-time chart and circular life-time graph can be used to determine the minimum 

number of registers in any DSP circuit [29]. The circular life-time graph is particularly 

useful because it graphically takes into account the repetitive and periodic nature of DSP 

operations. These graphs have been used, for example, to determine the size of register 

files in DSP architectures [52]. 

In this chapter, we use life-time analysis to derive closed-form expressions for the 

minimum number of registers required by a statically scheduled DSP program. These 

techniques offer several advantages over previously used techniques. First, the closed- 

form expressions can be used to represent cost functions for high-level synthesis opti- 

mization tools. An example of using these closed-form expressions in an integer linear 

programming (ILP) formulation is given in Section 3.4. Second, the analytical tools we 

introduce can be used to derive expressions for the minimum number of registers un- 

der a variety of memory models which describe how data can be allocated to memory. 

This is important because the target architecture may impose constraints on how data 

can be routed to memory. We derive expressions for three memory models, namely the 

operation-constrained, processor-constrained, and unconstrained memory models. For 

the unconstrained memory model, where all memory-sharing constraints are relaxed, 

the minimum number of registers required to implement a DFG with m nodes can be 

computed in 0(m2) time.   A third advantage of the analytical tools we introduce is 
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that they can be used to determine memory requirements for more complex algorithm 

descriptions, such as DFGs which have multiplexers in the data paths. 

Pipelining and retiming [27] are powerful tools used in high-level synthesis. Pipelining 

can be considered to be a special case of retiming. We consider an integer linear pro- 

gramming solution to the retiming problem, referred to as the minimum physical storage 

location (MPSL) retiming, which retimes a scheduled DFG such that its memory re- 

quirements are minimized under the unconstrained memory model while the schedule 

remains valid for the retimed DFG. We use MPSL retiming to retime a DFG which 

has been scheduled using the MARS design system [26], and we compare the memory 

requirements of MARS to a globally optimal solution. Our results show that the MARS 

system gives optimal or close-to-optimal results in terms of memory requirements. 

The results we present can be used throughout the high-level synthesis process. Ex- 

pressions for the minimum number of registers can be used during scheduling to help 

determine the total cost of the architecture. After scheduling, MPSL retiming can be 

used to optimally retime a DFG in terms of registers required for its implementation. 

During memory management, our techniques can be used to optimize the hardware de- 

sign in terms of the number of registers required. For instance, given the scheduled DFG 

and the desired memory model, the minimum number of registers required can be de- 

termined, and register allocation can be performed by an appropriate register allocation 

scheme which guarantees completion (e.g., forward-backward register allocation [51]). 

Expressions for the minimum number of registers can also be used to evaluate the effec- 

tiveness of register allocation schemes which are based on heuristics, since some schemes 

may require more memory than the theoretical lower bound in order to maintain simple 

control structures. 

This chapter is organized as follows. The algorithm DFG model and the pipelined pro- 
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cessor model used in the chapter are described in Section 3.2. This section also describes 

the systematic folding techniques which are used as a framework for our derivations. 

Expressions are derived in Section 3.3 to compute the minimum number of registers re- 

quired to implement a statically scheduled DFG for various memory-sharing models. In 

Section 3.4, memory minimization is considered simultaneously with retiming, and our 

conclusions are presented in Section 3.5. 

3.2    Preliminaries 

The DFG model we consider represents periodic and nonterminating data-flow programs. 

We consider homogeneous (single-rate) DFGs, where each node is executed once per 

iteration; however, the techniques used in this chapter can also be applied to multirate 

DFGs since any well-behaved multirate DFG can be transformed into an equivalent 

single-rate DFG [55], [56]. Memory requirements for multirate DSP program descriptions 

have also been considered [57], [58]. In each iteration of the homogeneous DFGs we 

consider, a node consumes exactly one sample from each arc that is input to the node 

and produces exactly one sample which is available at the output of the node. Each 

occurrence of a data path connecting the output of a node to an input of a node is 

called an arc. Figure 3.2(a) shows one representation of a DFG which contains four arcs, 

namely arc U -¥ V\ with 0 delays, arc U -> V\ with 4 delays, arc U -> V2 with 2 delays, 

and arc U -» U with 1 delay. Figure 3.2(b) shows another representation of the same 

DFG. In this chapter, the DFG simply provides a program description. As a result, the 

two representations in Figures 3.2(a) and (b) can be considered equivalent since they 

describe the same DSP program. 

The DFG is assumed to have no multiplexers and no conditional branches.   When 

computing the number of registers required to implement a DFG, G, it is assumed that 
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Figure 3.2: (a) A DFG with four arcs, (b) Equivalent representation of the DFG shown 
in (a). 

all arcs in G have both a source node and a sink node in G. Arcs which communicate 

with the outside world can be included by introducing dummy nodes. 

The following subsections describe the pipelined processor model used in this chapter 

and the systematic folding techniques which form a framework for our derivations. 

3.2.1    The Pipelined Processor Model 

Consider a processor H with P pipelining stages and computational latency of T units. 

This pipelined processor is often represented as shown in Figure 3.3(a). The hardware 

in the dashed box in Figure 3.3(a) is referred to as H^p\ A more explicit representation 

of H^ is shown in Figure 3.3(b), where the computational latency of each sub-oper- 

ator Hi,#2,•••jHp is assumed to be T/P. The dashed box shows that the P delays 

£>i, £>2i • • •, Dp are internal to H^ and cannot be accessed by other data paths. 

Consider the implementation of the pipelined processor H shown in Figure 3.3(c). 

The hardware in the dashed box in Figure 3.3(c) is referred to as H^p'\ In this case, the 

P' = P - 1 delays Dv, D2,..., Dp-i are internal to H^p'\ but the delay DP is external 
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to H(p > and can be accessed by other data paths. A simplified version of this model 

is shown in Figure 3.3(d). The structure shown in Figure 3.3(d) may not be acceptable 

for some applications due to the multiplexer delay, TMUX- The final stage of pipelined 

processor H has a computational latency of T//p +TMUX, where Tnp is the computational 

latency of Hp. If T//p +TMUX is greater than the desired clock period, TQESIRED, then 

the multiplexer must be eliminated and the delay Dp can be dedicated to processor H 

as in Figure 3.3(b). Throughout this chapter, we assume T//p + TMUX < TDESIRED, so 

that the pipelined processor model H^p"> can be used and the delay Dp can be accessed 

by outputs of other processors, as shown in Figure 3.3(d). We also assume P > 1 so 

that P' is nonnegative. When computing the minimum number of registers required 

to implement a statically scheduled DFG, we do not count the P' registers which are 

internal to the processor. 

w 

H 
*        I 

(P) 

H PD 

(a) 

H (P) 

w H D, D2-~.~-.Dp. 

(c) 

Figure 3.3: (a) Implementation of P-stage pipelined processor H with lumped pipelining 
delays, (b) Pipelined processor with separated internal pipelining delays, (c) Pipelined 
processor where the last pipelining delay can be shared with other data paths, (d) A 
simplified version of (c). 
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3.2.2    Systematic Folding Techniques 

The folding transformation formalized in [28] gives a method of systematically determin- 

ing control circuit specifications from a statically scheduled DFG. This section presents 

a brief introduction to these systematic folding techniques. 

Consider the algorithm DFG in Figure 3.4(a) which contains the arc U -> V with 

i delays. In this system, the result of the l-th iteration of operation U is used for the 

(/ + i)-th iteration of operation V. Let TV be the folding factor, i.e., TV operations are 

executed using a single hardware operator. Furthermore, let u and v be the folding 

orders of U and V, respectively. The folding order describes the time partition, or the 

time unit modulo TV, in which an operation is scheduled, i.e., the l-th iteration of U is 

scheduled to be executed by hardware operator Hy at time unit (Nl + u). Similarly, the 

(/ + z)-th iteration of V is scheduled to be executed by hardware operator Hy at time 

unit TV(/ + i) + v. If Hy has Pu pipelining stages and the pipelined processor model 

H(p ) (see Figure 3.3(d)) is used, then the result of the l-th iteration of U is output from 

H\P at (Nl + u + P[f), where P'v = Pv - 1. The folding process maps each arc U -»• V 

with i delays in the algorithm DFG to an arc in the architecture DFG. We denote by 

Dp{U ->■ V) the number of delays on the arc in the architecture DFG which is the result 

of folding arc U -> V in the algorithm DFG. This delay is the difference between the 

execution time of the (/ + i)-th iteration of V and the time that the result of the l-th 

iteration of U is available, i.e., 

DF{U ->V) = N{l + i)+v-{M + u + P{j) = Ni-P[j + v-u. (3.1) 

Note that the number of folded delays is iteration independent, i.e., Dp(U -> V) is 

independent of /. Hardware operator Hy, which is pipelined by Py stages and has P\j 

internal pipelining delays, is connected to hardware operator Hy at switching instance 

62 



(Nl + v) with DF(U -»• V) delays, as shown in Figure 3.4(b). This derivation differs 

slightly from the derivation in [28] since here we use the pipelined processor model H^pn> 

(see Figure 3.3(d)), where the pipelined processor model #(p) (see Figure 3.3(a)) is used 

in [28]. 

M+v 

©H /D ®    !@H^£ EL(U-V) 

(a) (b) 

Figure 3.4: (a) An arc U -> V in the algorithm DFG. (b) The mapping of the folded arc 
in the architecture DFG. 

A folding set is an ordered set of operations which are executed by the same processor. 

Each folding set contains N entries, some of which may be null operations. The operation 

in the j'-th position within the folding set (where j goes from 0 to TV-1) is executed by the 

processor during time partition j. For example, consider the folding set Si = {Ai, 0, A2) 

for N = 3. Operation A\, belongs to folding set Si with folding order 0 (also denoted as 

(Si|0)), and operation A2 belongs to folding set Si with folding order 2 (also denoted 

as (Si|2)). Due to the null operation in the 1-st position within Si, the operator that 

executes operations Ay and A2 will not be utilized at time instances 3/ + 1. For a folded 

system to be realizable, DF{U -> V) > 1 must hold for all arcs. Once valid folding sets 

have been assigned, pipelining and retiming can be used to satisfy this property (see 

[28]). 

In the folded realization, the data on the system input is assumed to be valid for N 

clock cycles before changing. For example, if N = 2 and the folded realization is assumed 

to operate with period T, then the input sample x[0] must be valid from 0 to 2T, x[l] 

must be valid from 2T to 4T, etc. 

We demonstrate the use of systematic folding techniques by folding the biquad filter 

63 



in Figure 3.5(a). Assume addition and multiplication require 1 and 2 units of time, 

respectively (i.e., TA = 1 and TM = 2), and one-stage pipelined adders and two-stage 

pipelined multipliers are available (i.e., PA = 1 and PM = 2). A retimed version of this 

filter with valid folding sets assigned using folding factor N = 4 is shown in Figure 3.5(b). 

Folding factor N = 4 means that the iteration period of the folded hardware is 4 time 

units, i.e., each node of the biquad filter is executed exactly once every 4 time units in 

the folded DFG. The folded circuit is shown in Figure 3.6. To see how the folded DFG in 

Figure 3.6 is obtained from the algorithm DFG in Figure 3.5(b), consider arc A\ ->■ M4. 

Using (3.1), we find 

DF{A\ -¥ M4) = 4(2) -0 + 1-3 = 6. 

This means there is an arc in the folded DFG from the adder to the multiplier with 6 

delays. Since this arc ends at node M4, which has folding order 1 in the algorithm DFG, 

the folded arc is switched at the input of the multiplier in the folded DFG at 41 + 1. 

This folded arc is shaded in Figure 3.6. Using Figure 3.1(a) as another example and 

assigning folding orders 2 and 8 to the multiply and add operations, respectively, and 

using N = 10 and PAt = 2, we get 10(0) -1 + 8-2 = 5 delays in the folded arc as shown 

in Figure 3.1(b). 

IN 
(S,I3) 

<s>-^ -<$> 
(S|ll) 

A, 

n 

OUT 

A ' .(A). 

a 

(k)—(MJ>- 
1    (s,io) 

c 

(S.I2) 

<5^' 

A,)(S,iO) 

(a) (S,I3) (b) (Sjll) 

Figure 3.5: (a) The biquad filter, (b) The retimed filter with valid folding sets assigned. 

The folded DFG in Figure 3.6 represents the data path specifications obtained from 

64 



IN 

luj, l'WK I-1, 

(0,21 ; JU^      ;   

I *. 

:-r (21 

OUT 

(0) [2| (3|    l| 

3S 

a-I2t 
frJlt 
c-l2fc" 
«/-life 
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Figure 3.6: The folded biquad filter using the specifications given in Figure 3.5(b). The 
shaded arc represents arc A\ -> M4 in the folded DFG. 

the scheduled algorithm DFG by using (3.1); however, this DFG does not represent the 

most efficient implementation of the scheduled DFG in terms of memory usage. Through- 

out the remaining sections of this chapter, expressions are derived for determining the 

most efficient implementation of a statically scheduled DFG in terms of the amount of 

memory required for the implementation. We now introduce some definitions that will 

be used in these derivations. 

Let xi, I > 0 be the result of the l-th iteration of operation U. Recall that each node 

in the DFG is executed exactly once per iteration. Throughout this chapter, we consider 

only nonnegative iterations of each operation, which results in no loss of generality. 

Variable x; is produced exactly once by Hy, but may be consumed multiple times by 

one or more processors due to the possibility of fanout. We define a unique production 

time and a unique consumption time for each variable. 

Definition 3.1 The production time of variable xi, denoted as pXl, is the time unit in 

which xi is output from H\j  ', which is Nl + u + P'y.   The consumption time of xi, 
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denoted as cX[) is the latest time unit during which xi is input to any processor. 

Recall that u is the folding order of operation U, which is the time partition, or time unit 

modulo N, in which the operation U is scheduled to be executed by processor HJJ. Since 

we consider only nonnegative iterations of nodes, pI( > u + Py always holds. Also, the 

consumption time must be greater than the production time, i.e., pI( < cI( must always 

hold because Dp(U ->■ V) > 1 is assumed. In the remainder of the chapter, pXl >u + P[j 

and pXl < cI( are implicitly assumed. We use pX[ and cXi to define the time interval for 

which the variable xi is live. 

Definition 3.2   The variable i/ is live for all time units in the interval (pIpcI(]. 

3.3    Memory Minimization without Retiming 

In this section, we derive expressions for the minimum number of registers required to 

implement a DFG assuming that the DFG has already been scheduled and no more 

circuit transformations (e.g., retiming) are to be performed on the DFG. The minimum 

number of registers required to store the variables that are output from a single node 

is first computed. The operation-constrained, processor-constrained, and unconstrained 

memory models arc then described, and expressions are derived for the minimum number 

of registers required to implement arbitrary DFGs under these models. 

3.3.1    Minimum Number of Registers for Outputs from a Single Node 

Before considering the case where the output variables of a node are broadcast to several 

arcs (e.g., node U in Figure 3.2), we consider the simple case of a single arc U -> V as 

shown in Figure 3.4(a). The minimum number of registers required to implement the 

Dp{U ->• V) delays in Figure 3.4(b) can be calculated using life-time analysis. If we let 
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X[, I > 0, be the result of the l-th iteration of node U, then the production time of xi 

is pX{ = u + P'u + Nl and its consumption time is cI( = pX[ + Df(U -» V). Consider 

time unit K. The first variable that is produced by node U is the result of the 0-th 

iteration of U, and the production time of this variable is defined to be pXo. A new 

variable is produced by node U every N time units, so the number of variables which 

have production times prior to time unit K (i.e., which satisfy pXl < K) is 

'K-Pxo' rP,u{K) = 
N 

(3-2) 

where \x] is the ceiling of x, which denotes the smallest integer greater than or equal 

to x. Using a similar argument, the number of these variables with consumption times 

prior to time unit K (i.e., which satisfy cI( < K) is 

'K-cr 
rc,u(K) 

^Xo 

N 
(3-3) 

Note that these expressions for rPiv(K) and rCtu(K) are valid for all K such that 

rPyu{K) > 0 and rc,u{K) > 0. According to Definition 3.2, a variable is live at time 

unit K if it is produced prior to K and not consumed prior to K. Therefore, the num- 

ber of .live variables at time unit K is the difference between the number of variables 

produced prior to time unit K and the number of variables consumed prior to time unit 

K, i.e., rlive<ir(K) - rPtU{K) - rCyU(K). Using (3.2) and (3.3), the expression for the 

number of live variables at time unit K becomes 

nive,u{K) 
~K -Pxo~ 

N 
- 

~K -cXo~ 
N 

(3.4) 

The minimum number of registers required to implement the DF{U -> V) delays in 

Figure 3.4(b) is the maximum value of ruvetU(K) over all K. The value of ruvetU(K) 

is periodic in K with period N because the folded architecture operates periodically 

with period N. Therefore, we only need to evaluate (3.4) for N consecutive time units. 
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Evaluating (3.4) at time units K = qN + n for some integer q and n € [0, N) results in 

the number of live samples at time partition n, given by 

riive,u(n)    = 
~qN + n 

N 
'n-Pxo' 

N 

~Px 0 

~n 

\qN + n-cXo 

N 
- {Pxo + DF(U -»• vm 

N 

where cXo = pXo + Dp(U ->■ V) has been used. The minimum number of registers 

required to implement the Dp{U -> V) delays in Figure 3.4(b) is the maximum value of 

riive,u{n) over the interval n G [0, AT), i.e., 

(max) f /   \ l r/W(/ =   S^Jr«»e,t/(n)}. 
' n€[0,yV) 

The following lemma can be used to find the maximum of rnvey{n) for n G [0, N). 

Lemma 3.1  Given integers A, B, n, and N > 0, 

max 
ne[0 

ix  < 
,A0 I 

B + n 
N 

B - A + n 
N }- 

A 
N 

Proof: Since 

B + n 
N 

B- A + n 
N 

(3.5) 

is periodic in n with period N, we only need to show that the maximum of this expression 

is   ^   for any N consecutive integers. Therefore, it is sufficient to show that 

max 
ne[A~B,A-B+N) i B + n 

N 
B- A + n 

N }- 
A 
N 

The expression in (3.5) equals | •$■! for n = A - B. It remains to show that 

m-\ B - A + n 
N 

< A 
N 

holds for n = A-B + l,A-B + 2,. ..,A- B + N -1. This can be written as 

-A + k' 
N 

- 
■A" 

N 
< 

■A' 

N (3.6) 
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Figure 3.7: (a) A fanout node U. (b) The lifetime chart of samples in the folded archi- 
tecture. 

Table 3.1: Summary of the three memory models described in Section 3.3.2. 

memory model 

operation-constrained 
(Section 3.3.2) 

processor-constrained 
(Section 3.3.2) 
unconstrained 
(Section 3.3.2) 

outputs of the nodes 
executed by the same processor 

can share registers 

No 

Yes 

Yes 

outputs of 
different processors 
can share registers 

No 

No 

Yes 

in G. This results in no loss of generality since arcs that communicate with the outside 

world can be included by introducing dummy nodes. Let U be the set of nodes in G with 

at least one output arc that terminates at a node in G. In this section, the expressions 

derived in Section 3.3.1 are used to compute the minimum number of registers required 

to implement G for the operation-constrained, processor-constrained, and unconstrained 

memory models. Table 3.1 gives an overview of the three memory models discussed in 

this section. 
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The Operation-Constrained Memory Model 

In the operation-constrained memory model, each node U E U in G is allocated a unique 

set of registers in the synthesized hardware. The only variables which are allowed to 

occupy the registers allocated to U are those variables which result from the execution 

of node U. As a result, register minimization under the operation-constrained memory 

model consists of independently computing the minimum number of registers required 

to implement each node U eU and adding these results for all nodes in U. Using (3.10) 

to compute the number of registers required to implement each node, we get 

n(max) 
UF,U 

N ueit 

where Dpy    is computed as in (3.8). 

Example 3.2 Consider the scheduled biquad filter in Figure 3.5(b). Recall the assump- 

tions that addition and multiplication require 1 and 2 units of time, respectively (i.e., 

TA = 1 and TM = 2), and one-stage pipelined adders and two-stage pipelined multipliers 

are available (i.e., P,\ = 1 and PM — 2). Table 3.2 shows the number of registers required 

to individually implement each node. For example, the five arcs which are output from 

node Ai have 1, 2, 3, 4, and 6 folded arc delays. Since max{l,2,3,4,6} = 6, node A\ 

requires [6/4] = 2 registers. By adding the values in Table 3.2, we find Ro = 8, i.e., 

8 registers are required to implement the biquad filter shown in Figure 3.5(b) using the 

operation-constrained memory model. □ 

The operation-constrained memory model is suboptimal with respect to minimization 

of registers since the registers are often underutilized. For example, consider nodes 

Az and AA in Figure 3.5(b). These two nodes belong to folding set S\ so they are 

executed by the same processor, which is a one-stage pipelined adder. The outputs of 

72 



Table 3.2: The number of registers required to implement the nodes of the biquad filter 
individually. 

NodeC/ 
n(max) 
UF,U 

N 

Ai 2 
A3 

A4 

Mi 

M2 

M3 

M4 

this adder due to A3 and A4 must be delayed by 1 time unit since using (3.1) we find that 

DF{A$ -¥ Ai) = 1 and Dp(A4 -¥ A2) = 1 in Figure 3.5(b). Since the variables resulting 

from operation A3 are live during time units 4/ + 3 and the variables resulting from A4 

are live during time units Al + 1, these outputs could share the same register; however, 

under the operation-constrained memory model, each of the nodes A3 and A4 requires 

a separate register. This particular underutilization problem could be eliminated by 

allowing all variables which are output from the same processor to share registers, which 

leads to the processor-constrained memory model. 

The Processor-Constrained Memory Model 

In the processor-constrained memory model, each processor in the synthesized hardware 

is allocated a unique set of registers. The only variables which are allowed to occupy the 

registers allocated to a processor are those variables which are output from that particular 

processor. As a result, register minimization under the processor-constrained memory 

model consists of individually computing the minimum number of registers required 

to allocate the outputs of each processor and adding these results for all processors. 

73 



Recall that the nodes (i.e., operations) which are executed by the same processor belong 

to the same folding set. The processor-constrained memory model is less restrictive 

than the operation-constrained memory model since the processor-constrained model 

allows outputs from the nodes in a folding set to share registers in the synthesized 

hardware, while the operation-constrained memory model allows no memory sharing 

among variables produced by different nodes. To determine the number of registers 

required to implement all nodes in a folding set, we must compute the number of live 

variables due to the nodes in the folding set for each time partition n G [0, N). 

For each node U GW, we must first compute Dpy using (3.8). The number of live 

variables due to node U in time partition n can be found by substituting pXQ = u + P'v 

into (3.9) to get 

\n-(u + Pljy 
riive,u{n) =    jj  

(mai) \ n-iu + P'y+D^P) 
N 

(3.11) 

Let Si, 52,..., Ss be the folding sets in G. Note that s is the number of folding sets in 

G, which is equivalent to the number of processors in the folded realization of G. The 

number of live variables in time partition n G [0, N) due to all U € Sk is 

ruve,sk(n) =  E rUve,u(n), 
uesk 

and the number of registers required to implement all nodes U € Sk is 

(max) r /   \i riiveJk=  max  {r'it,e,sfc(n)}- 

The minimum number of registers required to implement G using the processor-con- 

strained memory model is 

RP = E rSfc = E     5Ä { E rHve,u{n) 
*=i *=i \nG(0'N) [ueSk 
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Table 3.3:  The number of live variables at the output of each operator of the folded 
biquad filter for all possible time partitions. 

time Si(+) 52(x) 
0 2 2 
1 3 1 
2 1 2 
3 2 1 

Example 3.3 For the biquad filter in Figure 3.5(b), the number of registers required to 

delay the outputs of the adder is r\^x
s = 3 and the number of registers required to delay 

the outputs of the multiplier is r}™^ = 2. As a result, Rp = 5, i.e., 5 registers are 

required to implement the folded biquad filter using the processor-constrained memory 

model. 

The processor-constrained memory model may not result in the minimum number of 

registers because variables which are output from different processors are not allowed to 

share registers. Table 3.3 shows the number of live variables for the scheduled biquad 

filter in Figure 3.5(b) for the folding sets Si (adder) and 52 (multiplier) during each 

time partition. The total number of live variables during any time partition can be 

found by simply adding the number of live variables due to Si and 52 for that time 

partition. Notice that the maximum number of live variables in any time partition is 4 

even though we computed in Example 3.3 that the folded implementation requires 5 

registers using the processor-constrained memory model. This demonstrates that the 

processor-constrained memory model may not achieve global optimality with respect to 

register minimization; however, this may still result in an efficient architecture due to 

local interconnection. 
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The Unconstrained Memory Model 

In the unconstrained memory model, each variable can be stored in any register in 

the synthesized hardware, regardless of the node in the DFG or the processor in the 

synthesized hardware from which the variable originates. The minimum number of 

registers required under the unconstrained memory model is computed by taking the 

maximum of the total number of live variables in G over one period of operation, which 

can be written as 

Ru =   max  \ V rHvey(n) \ , (3.12) 

where (3.8) and (3.11) are used to compute ruve,u{n). The quantity Ru represents the 

theoretical lower bound on the number of registers required to implement G. 

Example 3.4 Table 3-4 lists the value of ruvetu(n) for all nodes U E U and all time 

partitions n E [0,N) for the biquad filter in Figure 3.5(b). The number of live vari- 

ables for each time partition can be found by taking the sum of each column, i.e., these 

values for time partitions 0, 1, 2, and 3 are 4, 4, 3, and 3, respectively. The mini- 

mum number of registers required using the unconstrained memory model is Ru = 4 

since max {4,4,3,3} = 4. Recall that, for this example, the operation-constrained mem- 

ory model required 8 registers and the processor-constrained memory model required 5 

registers. D 

To determine the computational complexity of computing Ru in (3.12), let m be the 

number of nodes in G. Clearly, the number of nodes U EU cannot be greater than m. If 

we assume the maximum number of inputs to any node is a constant that is independent 

of m, then the number of arcs in G grows linearly with m, and Dy^x' in (3.8) can be 

computed for U E U in 0{m) time. The maximum number of nodes in G that can be 
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Table 3.4:  The number of live variables due to each node in the biquad filter for all 
possible time partitions. 

n = 0 n= 1 n = 2 n = 3 

riive,Ai (n) 2 2 1 1 

riive,A3(
n) 0 0 0 1 

riiveM (") 0 1 0 0 

flive,Mi (n) 0 0 1 0 

riive,M2 (n) 1 0 0 0 

riive,M3 (n) 0 1 1 0 

Tlive,MA (n) 1 0 0 1 

T,ueuriive,u(n) 4 4 3 3 

executed by a single processor is m (the uniprocessor case), so N < m holds. Then 

rftt>e,c/(") m (3-11) can be computed for U G U and n e [0, AT) in 0(m2) time. The 

summation in (3.12) represents 0(m2) additions, and finding the maximum in (3.12) 

requires 0(m) comparisons. Therefore, Ru can be computed for an arbitrary DFG with 

m nodes in 0(m2) time. 

3.3.3    Comparison of Memory Models 

Table 3.5 compares the number of registers required for several benchmark filters under 

the various memory models. The benchmarks used are the fourth-order all-pole lat- 

tice filter mentioned in [59] (Fl), the fifth-order wave digital elliptic filter introduced 

in [47] (F2), the fourth-order Jaumann wave digital filter mentioned in [60] (F3), the 

four-stage pipelined lattice filter [61] (F4), and the biquad filter shown in Figure 3.5(a) 

(F5). These filters were scheduled using the MARS system [26]. Notice from Table 3.5 

that Ru < Rp < Ro for all of these filters, which appeals to our intuition since the 

operation-constrained memory model has the most restrictions on memory sharing while 

the unconstrained memory model has no restrictions on memory sharing. 

It is important to note that the three memory models considered in Section 3.3.2 are 
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Table 3.5: Register count using various memory models. The benchmark filters used are 
fourth-order lattice filter (Fl), fifth-order wave digital elliptic filter (F2), fourth-order 
Jaumann filter (F3), four-stage pipelined lattice filter (F4), and biquad filter shown in 
Figure 3.5(a) (F5). N is the iteration period. 

Filter N Ro Rp Ru 
Fl 10 15 7 6 
F2 16 34 12 10 
F3 10 16 9 7 
F4 2 29 20 18 
F5 4 8 5 4 

representative of the various models which can be chosen. New memory models can be 

defined as needed, and expressions can be derived for the minimum number of registers 

for these models using the same approach as used in Section 3.3.2. 

While Table 3.5 gives the number of required registers using the three memory models 

described in Section 3.3.2, there are side-effects which are not shown in the table. For 

example, decreasing the number of registers by using the unconstrained model typically 

increases the number of multiplexers required to allocate data to these registers, and 

the overall effect of using fewer registers may actually be an increase in area due to the 

area of the multiplexers. As a result, the number of registers cannot be considered to 

be the sole cost of the circuit, and several memory models may need to be evaluated to 

determine the best one for a given application. 

3.4    Memory Minimization Using Retiming 

The derivations in Section 3.3 are based on the assumption that the DFG has been 

scheduled and no more circuit transformations are to be performed on the DFG. In 

this section, we consider optimal retiming of the DFG after scheduling so the resulting 

implementation uses the minimum number of registers under the unconstrained memory 
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model. 

Retiming is often used to reduce the critical path or minimize the number of delays 

in a circuit [27]. Retiming has also been used for scheduling [11], [12], [26]. This section 

deals with using retiming to minimize the number of registers in the hardware realization 

of a statically scheduled DFG. Of course, the retiming must always maintain the validity 

of the schedule by keeping Dp(U -» V) > 1 for all arcs U ->• V so the resulting DFG is 

realizable. 

The problem of minimizing the number of delays in a scheduled DFG is not analogous 

to minimizing the number of registers required by the hardware realization of the DFG. 

For example, the DFG in Figure 3.8(a) contains 3 delays and its hardware realization 

requires 5 registers using the unconstrained memory model when we assume an iteration 

period of N = 2 and that all hardware processors are pipelined by P = 1 stage. The 

folding orders are indicated next to the nodes. A retimed version of the DFG is shown in 

Figure 3.8(b), where the retiming values r(l) = 0, r(2) = 0, and r(3) = 1 are used. This 

retimed DFG contains 4 delays and its hardware realization requires 4 registers using 

the unconstrained memory model. From this example, we see that use of retiming to 

decrease the number of delays in the DFG can actually increase the number of registers 

required to implement the DFG in hardware. 

Recall that arc U -> V in Figure 3.4 is folded using (3.1). Using retiming, the number 

of delays in arc U -> V can be changed from i to 

ir = i + r(V)-r(U), (3.13) 

where ir is the number of delays in arc U -> V in the retimed algorithm DFG, and r(X) 

denotes the retiming value of node X [27]. Let D'F(U -> V) denote the number of folded 

arc delays obtained by folding arc U ->■ V in the retimed algorithm DFG. To ensure that 
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Figure 3.8: (a) A scheduled DFG which has 3 delays and whose hardware requires 5 
registers, (b) A retimed version of the DFG which has 4 delays and whose hardware 
requires 4 registers. For both parts, an iteration period of 2 is assumed and all nodes 
are mapped to processors with one pipelining stage. 

the corresponding arc in the folded hardware DFG has a nonnegative number of delays, 

we must force the constraint D'F(U -> V) > 1, which is equivalent to 

Nir-P(j + v-u-l>0. (3.14) 

This constraint ensures that the schedule which was determined prior to retiming is also 

valid after retiming. Since the retiming values for the nodes are restricted to be integers, 

(3.13) and (3.14) can be combined as in [28] to obtain 

DF(U-*V)-1 
r{U)-r(V) < 

N 
(3.15) 

where [x\ is the floor of x, which denotes the largest integer less than or equal to x. Once 

the set of constraints for the DFG is found using (3.15) (there is one such constraint 

for each arc in the algorithm DFG), a solution must be found using an appropriate 

technique. We consider an ILP formulation that satisfies the constraints while minimizing 

the number of registers required to implement the folded hardware DFG. 

In addition to the constraints specified by (3.15), the ILP technique must also use 

constraints to find the maximum values in (3.8) and (3.12). We refer to this formulation 

as Minimum Physical Storage Location (MPSL) retiming, which is summarized below. 

The set of equations in Step (II) of MPSL retiming are similar to those used in [21]. 

80 



MPSL retiming: Minimize Ru subject to 

(I) VJ7 G U and W G Vu 

r(U)-r{V) < 
DF(U -> V) - 1 

N 

(II) VC/ G U and VV G Vy 

D'{max) > ^^ ^ y) + Ar(r(F) _ r(c/)) 

(III) VnG[0,iV) 

' "n - (u + P/,) 

t/€W 
N 

'(max) 

N 

Consider the biquad filter shown in Figure 3.5(a). Assume TA = 1, TM = 2, PA = 1, 

and PM — 2. The iteration bound, i.e., the lower bound on the achievable iteration 

period, is 4 units [60], [62], and we consider scheduling the DFG so that the iteration 

period is equal to the iteration bound. Using the schedule found by the MARS system, 

the MPSL formulation retimes the DFG such that the minimum number of registers 

required to implement the biquad filter using the unconstrained memory model is 4. 

One such retiming of the schedule is shown in Figure 3.5(b) (recall that Ry = 4 was 

computed for Figure 3.5(b) in Example 3.4). Figure 3.9 shows the complete synthesized 

hardware for the DFG in Figure 3.5(b). Notice that register R\ is not utilized in time 

partition 2 and R\ is not utilized in time partition 3. This underutilization can also be 

seen in Table 3.4 where the sum of the n = 2 and n = 3 columns are each equal to 3, 

so that only 3 of the four registers are utilized during time partitions 2 and 3. In spite 

of this underutilization, the DFG in Figure 3.5(b) uses the minimum possible number of 

registers for the given schedule. 

The MPSL retiming problem was solved using the ILP solver GAMS [63]. We note 
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Figure 3.9: The complete synthesized hardware for the scheduled biquad filter in Fig- 
ure 3.5(b). D and Ri represent word-size registers. 

that in some cases, GAMS found an integer solution which it could not prove was optimal. 

In these cases, we proved that the solution was optimal by showing that there is a 

time partition for which no better solution exists. When applying MPSL retiming to 

the schedules obtained by MARS, we found that MPSL retiming did not reduce the 

number of required registers compared to the retiming performed by MARS, i.e., for the 

five benchmark filters we considered, the MARS system optimally retimed the filters in 

terms of the number of registers required under the unconstrained memory model for 

the schedules generated. Although this result suggests that the retiming performed by 

MARS is good, it says nothing about the quality of the schedules obtained by MARS 

with respect to memory requirements. 

To determine how the scheduling technique used by the MARS design system performs 

in terms of minimizing the required number of registers, the MARS schedules were 

compared to globally optimal results. To determine optimal results in terms of the 

number of registers, an ILP model is used which schedules a DFG by first minimizing 
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Table 3.6:  Register count for the benchmark filters described in Table 3.5.   N is the 
iteration pe iod. Both scheduling techniques require the minimum number of processors. 

Filter N 
MARS schedule 

using MARS retiming 
MARS schedule 

using MPSL retiming 
ILP 

schedule 
Fl 
F2 
F3 
F4 
F5 

10 
16 
10 
2 
4 

6 
10 
7 

18 
4 

6 
10 
7 
18 
4 

5 
10 
6 
18 
4 

the number of processors and then minimizing the number of registers, as in [37]. The 

results are shown in Table 3.6, where parameters TA = 1, PA = 1, TM = 2, and 

PM = 2 are assumed. First, the table shows that MPSL retiming does not change 

the number of registers required by the MARS schedules. The table also shows that 

the schedules obtained from the MARS system are optimal or near-optimal in terms of 

register requirements for the five benchmark filters. 

Example 3.5 Figure 3.10(a) shows a retimed version of the fifth-order wave digital 

elliptic filter given in [47]. The filter has been retimed using the MPSL retiming according 

to the schedule in Table 3.7 generated using the MARS system. Figure 3.10(b) shows 

the synthesized architecture which uses 10 registers. The 10 registers are denoted as Ri, 

and the internal pipeline delay of the multiplier, which cannot be shared by other data 

paths, is denoted as D. Note that parameters TA = 1, PA = 1, TM = 2, and PM = 2 

are assumed, and the iteration period of the hardware is 16 units, which is the iteration 

bound for the parameters assumed. 
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Table 3.7: The schedule from the MARS system for the fifth-order wave digital elliptic 
filter. 

node 1 2 3 4 5 6 7 
folding 

(set|order) (5i|14) (Si\0) (5i|H) (Si |15) (5-4|12) (Si|10) (S2|l) 

node 8 9 10 11 12 13 14 
folding 

(set|order) (Si\7) (ftlll) (54|8) (S2|12) (52|15) (S2|0) (54113) 

node 15 16 17 18 19 20 21 
folding 

(set | order) (5i|6) (Si\2) (5i|3) (5-2|7) (52|8) (S3|7) (S.I4) 

node 22 23 24 25 26 27 28 
folding 

(set|order) (54|5) (53|8) (ft|2) (S3|H) (53|12) (54|9) (S3|13) 

node 29 30 31 32 33 34 
folding 

(set|order) (53|0) (53|1) (54|14) (5! |12) (Sill) (S4|15) 

3.5    Conclusions 

Efficient use of memory in application-specific architectures for DSP is very important 

in order to meet design specifications. Inefficient use of memory can result in inefficient 

designs due to effects such as increased area and increased power consumption. 

We have derived closed-form expressions for the minimum number of registers re- 

quired by a statically scheduled DSP program for the operation-constrained, processor- 

constrained, and unconstrained memory models. We first derived expressions for the 

minimum number of registers under the operation-constrained and processor-constrained 

models, and we demonstrated via the biquad filter example why these memory models 

are not optimal in terms of the number of registers required. We then derived the expres- 

sion for the minimum number of registers under the unconstrained memory model. This 

expression, which gives the theoretical lower bound on the number of registers required 

to implement a statically scheduled DSP program, can be computed in 0(m2) time for 
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a DFG with m nodes. The techniques we used in our derivations can also be used to de- 

termine expressions for lower bounds on memory requirements for other memory models 

not discussed in the chapter. The results in this chapter are most applicable to dedicated 

application-specific hardware; however, we believe that these results can also be applied 

to other technologies, such as FPGA-based designs. 

We also considered retiming to minimize memory requirements of a statically sched- 

uled DFG. The MPSL retiming formulation uses integer linear programming techniques 

to determine the optimal retiming of the DFG in terms of memory required under the 

unconstrained memory model while maintaining the validity of the schedule. We used 

MPSL retiming to verify that retiming performed by the MARS system is optimal for 

the benchmark filters we considered. We then compared memory requirements of sched- 

ules obtained by MARS to schedules obtained using integer linear programming which 

are optimal in terms of required memory under the unconstrained memory model. Our 

results show that the schedules obtained by MARS are optimal or close to optimal in 

terms of memory requirements. 

The evaluation of the schedules obtained by MARS demonstrates how the techniques 

presented in this chapter can be used for evaluation of high-level synthesis systems. These 

techniques can be used for design and evaluation throughout the high-level synthesis 

process. 
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Figure 3.10: (a) Fifth-order wave digital elliptic filter. The DFG has been retimed 
using MPSL retiming to minimize the number of registers required given the schedule 
generated by the MARS system (see Table 3.7). (b) Synthesized hardware using the 
minimum possible iteration period of 16 and the theoretical lower limit of 10 registers. 
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Chapter 4 

Multirate Folding 

4.1    Introduction 

The widespread use of digital representation of signals for transmission and storage has 

created challenges in the area of digital signal processing (DSP). In response to these 

challenges, new DSP algorithms have emerged for tasks such as compression and filtering 

of digital signals. Many of these algorithms are multirate in nature, meaning that the 

sample rate is not constant throughout the algorithm description [5]. While the theory of 

multirate DSP has matured over the past decade, there has been relatively little research 

on the topic of designing efficient real-time architectures for multirate systems. This has 

resulted in a lack of CAD tools that can translate multirate algorithms into efficient 

VLSI architectures. 

Considerable work has been done in the area of scheduling multirate DSP algorithms 

and constructing efficient DSP code for these algorithms [55, 64, 57, 65, 66]. The topic 

of this chapter is multirate folding [36], which is a technique for systematically synthesiz- 

ing control circuits for single-rate architectures which implement multirate algorithms. 

Throughout this chapter, the term single-rate architecture is used to describe a syn- 

chronous architecture where the entire architecture operates with the same clock period. 
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Examples of data-flow graphs (DFGs) describing multirate DSP algorithms are shown in 

Figure 4.1. The DFGs in Figure 4.1 are multirate due to decimation by 2 (| 2 block which 

discards every other sample) and expansion by 2 (f 2 block which inserts a zero between 

each adjacent pair of samples), which respectively halve and double the sample rate of a 

signal. A direct mapping of a multirate DSP algorithm to hardware would require data 

to move at different rates on the chip. This would require routing and synchronization of 

multiple clock signals on the chip. To avoid these problems, we concentrate on mapping 

the multirate DSP programs to single-rate VLSI architectures. 

The advantages of multirate folding fall into two broad categories. The first advantage 

is that the multirate folding equations can be used to systematically determine the 

control circuitry for the architecture from a scheduled DFG. The second advantage, 

which is slightly more subtle, is that this formal approach can be used to address other 

related problems in high-level synthesis in a formal manner. Two such problems, memory 

minimization and retiming [27], are considered in this chapter. Using the multirate 

folding equations, we derive expressions for the minimum number of registers required 

to implement the architectures, and we derive constraints for retiming the circuit such 

that a given schedule is valid. 

We first introduced multirate folding in [36] as a technique for synthesizing archi- 

tectures for tree-structured filter banks. Full and pruned tree-structured filter banks 

are useful for many DSP applications, such as signal coding and analysis. Recent in- 

terest in the discrete wavelet transform (DWT) has significantly increased the number 

of applications for tree-structured filter banks since the DWT can be computed using 

a pruned tree-structured filter bank [42, 41, 43, 44]. Computation of wavelet packet 

bases is another application of pruned tree-structured filter banks [45]. Full binary tree- 

structured filter banks for signal analysis and synthesis are shown in parts (a) and (b) 
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of Figure 4.1. Pruned binary tree-structured filter banks which represent analysis and 

synthesis structures for the discrete wavelet transform (DWT) are shown in parts (c) and 

(d) of Figure 4.1. Multirate folding can be used to synthesize architectures for each of the 

four filter banks in Figure 4.1. In Section 4.6, we give a detailed example which shows 

how the techniques presented in this chapter can be used to design an architecture for 

the three-level discrete wavelet transform analysis filter bank as shown in Figure 4.1(c). 
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Figure 4.1: Examples of full and pruned binary tree-structured filter banks, (a) Full-tree 
analysis filter bank, (b) Full-tree synthesis filter bank, (c) Pruned-tree analysis filter 
bank which can be used to compute the DWT. (d) Pruned-tree synthesis filter bank 
which can be used to compute the inverse DWT. 

The main properties of multirate folding are summarized below: 

• Multirate folding is a novel technique for synthesizing control circuits for single-rate 

architectures which implement multirate DSP algorithms. 

• The multirate folding equations allow us to address other problems in high-level 
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synthesis, such as memory minimization and retiming. 

• Multirate folding operates directly on the multirate DFG, avoiding the step of first 

constructing an equivalent single-rate algorithm description. 

• Multirate folding accounts for pipelining, so architectures can be designed for high 

speed and low power [67] applications. 

• Multirate folding is applicable to a wide variety of DSP algorithms. We demon- 

strate its utility by designing a discrete wavelet transform architecture. 

The chapter is organized as follows. Section 4.2 reviews some fundamentals of mul- 

tirate digital signal processing. In Section 4.3, we derive the folding equations which 

are used to systematically synthesize the control circuits for the pipelined architectures. 

Retiming for multirate folding is addressed in Section 4.4. Memory requirements for 

the folded architectures are addressed in Section 4.5, and the discrete wavelet transform 

design example is given in Section 4.6. Our conclusions are stated in Section 4.7. 

4.2    Some Multirate DSP Fundamentals 

This section provides a review of some multirate DSP fundamentals which are used 

throughout the chapter. 

Multirate DSP algorithm descriptions contain decimators and/or expanders. Fig- 

ure 4.2 shows a decimator and an expander, which obey the input-output relationships 

VD{n) = x(Mn) and 

(  \ — )  x(ltf)   if " is a multiple of M 
VE\n) - | 0 otherwise 

Note that we use the term expander rather than interpolator to describe the block in 
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Figure 4.2(b) since interpolation generally implies expansion followed by filtering. The 

decimator and expander both have the effect of changing the sample rate. 

x(n)- IM— yD(n) x(n) -fM yB(n) 

(a) (b) 

Figure 4.2: (a) Decimation by M. (b) Expansion by M. 

The noble identities are useful for theory and implementation of multirate DSP [5]. 

Special cases of these identities are shown in Figure 4.3. These relationships are used in 

Section 4.4 to derive conditions for retiming a multirate DFG for folding. 

„-Mi 
— IM IM 

tM 

(a) 

(b) 

tM 
.-Mi 

Figure 4.3: Redistribution of delays in a multirate system using the noble identities. 

4.3    Derivation of Folding Equations 

Folding is a technique for systematically determining control circuits in architectures 

where multiple algorithm operations (such as addition operations) are time-multiplexed 

to a single hardware module (such as a pipelined ripple-carry adder) [28]. The folding 

transformation is similar to loop folding [68] which has been used in high-level synthesis. 

Figure 4.4 shows an example of how folding can be used to time-multiplex two algorithm 

operations to a single hardware operator. Folding equations have been derived in the past 

for folding single-rate algorithms to single-rate architectures, and for folding single-rate 

algorithms to multirate architectures [28]. In this section, we review folding of single-rate 
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algorithms to single-rate architectures, and then derive equations for folding multirate 

algorithms to single-rate architectures. 

b(n) ^ , <£±L c(n) 

(a) (b) 

Figure 4.4: (a) A simple single-rate DSP algorithm with two addition operations, (b) 
A folded architecture where the two addition operations are folded to a single hardware 
adder with one stage of pipelining. 

4.3.1    Single-Rate Folding 

Consider an arc (also referred to as an edge) connecting nodes U and V with i delays, 

as in Figure 4.5(a). Let the l-th. iteration of nodes U and V be scheduled to execute 

at time units Nul + u and Nyl + v, respectively, where u and v are the folding orders 

of nodes U and V which satisfy u e [0,Nu) and v E [0, Ny). The hardware operators 

(also referred to as functional units) which execute nodes U and V are denoted as Hu 

and Hy, respectively. Note that Nu and Ny number of operations are folded to Hu and 

Hy, respectively. If Hu is pipelined by Py stages, then the result of the /-th iteration of 

node U is available at Nul + u + Pu- Since arc U —► V has i delays, the result of node 

U is used by the (/ + i)-th iteration of V, which is executed at Ny(l + i)+v. Therefore, 

the result must be stored for 

Df(U -> V) = Nv(l + i)+v- (Nul + Pu+u) = (Ny - Nv)l + Nyi -Pu + v-u 

time units. Since we assume that DSP programs iterate from I = 0 to / = oo, practical 

concerns require Nu = Ny to avoid the cases where Df(U -> V) approaches +oo or 
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-oo as / gets large. With N = Ny = Ny, the folding equation becomes 

DS
F{U ^V) = Ni-Pu+v-u, (4.1) 

which is independent of the iteration number, /. Arc U ->• V maps to a path from Hy 

to Hy in the architecture with Dp(U -> V) delays, and data on this path are input to 

Hy at Nl + v, as illustrated in Figure 4.5(b). 

      M+v 

u /D V R,D ru pyu-v) 
w M+v 

(a) (b) 

Figure 4.5: (a) An arc U -> V with i delays, (b) The corresponding folded arc. 

4.3.2    Multirate Folding 

Multirate folding provides a systematic technique for mapping multirate algorithms to 

single-rate hardware. Folding equations are first derived for arcs which contain decima- 

tors and then for arcs which contain expanders. 

The Folding Equation for Arcs Containing Decimators 

Consider the arc U -> V in Figure 4.6(a), where the output of node U passes through i\ 

delays, decimation by M, and %2 delays before reaching node V. Let the /-th iteration 

of node U execute at time unit Nyl + u and the l-th iteration of V execute at Nyl + v, 

where the folding orders satisfy u e [0, Nu) and v e [0, Ny). 

The signals labeled in Figure 4.6(a) are related by 

w\(l)   =   x(l — ii) 

w2(l)   =   wi(Ml) =x{Ml-n) 

y(l)   =   w2{l-i2) = x(M(l-i2)-ii) 

93 



x(Z) 
^D 

W^/V ,W2(/) 
JM ^D 

y(0 
v 

(a) 

^^[^jl^^^^V^H^ 
Nyl+v 

(b) 

Figure 4.6: (a) An arc U —>■ V which contains a decimator. (b) The corresponding folded 
arc. 

which implies that the sample y(l), which is consumed during the l-th iteration of V, is 

produced during the (Ml — [Mi2 -Hi))-th iteration of U. Sample y(l) is consumed by Hy 

in time unit Nyl + v and is produced by Hu in time unit N(j(Ml-(Mi2+ii)) + u. If Hu 

is pipelined by Py stages, then y(l) is available at time unit N(j(Ml- (Mi2+h))+u+Pu- 

Therefore, y(l) must be stored for 

D$(U->V)   =   Nvl + v - (Nu(Ml - (Mi2 + h)) + u + Pu) 

-   (Nv - MNu)l +Nu(Mi2 + i\) - Pu+v-u 

time units. As in the single-rate case, we would like this expression to be independent 

of I. This can be achieved by forcing Ny = MNu, which implies that node U executes 

M times for each execution of node V. This is intuitive since the output of node U 

is decimated by M before reaching node V. With Ny = MNu, the folding equation 

becomes 

Dg{U -> V) = Nu{Mi2 + ti) -Pu + v-u, (4.2) 

which is independent of the iteration number, I. 

Since node V is scheduled to execute on hardware operator Hy at time units Nyl + 

v, the data on arc U -» V are input to Hy at time units Nyl + v as illustrated in 
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Figure 4.6(b). For the case of M = 1, i.e.. where the decimator does not affect the data 

stream, iy and i2 can be combined as i = i\ + i2, and Ny = Ny = N, where N is the 

iteration period of nodes U and V. Substituting these expressions into (4.2) gives the 

single-rate folding equation (4.1). 

The Folding Equation for Arcs Containing Expanders 

Consider the arc U -» V in Figure 4.7(a), where the output of node U passes through 

i\ delays, expansion by L. and i2 delays before reaching node V. Let the Z-th iteration 

of node U execute at time unit Nu I + u and the /-th iteration of V execute at Nyl + v, 

where the folding orders satisfy u € [0,Nu) and v € [0, Ny). 

x(/), iwl(l)l ,^(0, , y(/) 
U *  i'iD tL ^D V 

(a) 
Nul+Nv(Lil+i2)+v 

(H^HPUDI^CU-V) 

(b) 
Figure 4.7:   (a) An arc U —*■ V which contains an expander,   (b) The corresponding 
folded arc. 

The signals labeled in Figure 4.7(a) are related by 

wi{l)   =   y(l + h) 

t»i(0    =   w2(Ll) = y{Ll + i2) 

x{l)   =   wi{l + ii) = y(L(l + ii) + i2) 

which implies that sample x(l), which is the output of the Z-th iteration of U, is used 

as the input of the (L(l + i\) + i2)-tb. iteration of V.   Sample x(l) is available at the 
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output of processor Hu at time unit Nyl + u + Pu and is consumed by Hy at time unit 

Ny(L(l + i\) + i2) + v, so x(l) must be stored for 

Df{U^V)   =   Nv(L(l + i1)+i2) + v-(Nul + u + Pu) 

=   (NvL-Nu)l + Nv(Lii+i2)-Pu + v-u. 

For this expression to be independent of I, NyL = Nu must hold. This implies that 

node V executes L times for every execution of node U, which makes sense since the 

output of node U is expanded by L before reaching node V. With NyL = Nu, the 

folding equation becomes 

Df(U -+ V) = Nv{Lix +i2)-Pu + v-u, (4.3) 

which is independent of the iteration number, I. The samples on the folded arc are input 

to Hv at Nvl + u + Pu + Df(U -> V) = Nvl + Ny(Lii + i2) + v, so the folded arc is 

switched at the input of Hy at Nvl + Ny{Li\ + i2) +v,as illustrated in Figure 4.7(b). 

For the case of L = 1, i.e., where the expander does not affect the data stream, ii and 

i2 can be combined as i = i\ + i2, and Nu = Ny = N, where N is the iteration period 

of nodes U and V. Substituting these expressions into (4.3) gives the single-rate folding 

equation (4.1). 

4.4    Retiming for Folding 

Retiming for folding is the process of retiming a DFG so the number of delays on any 

folded arc is nonnegative. The constraints which guarantee this for single-rate folding 

have been derived in [28]. In this section, we review the single-rate constraint and derive 

the retiming constraints which ensure that the number of folded arc delays is nonnegative 

for multirate folding. 
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4.4.1    Single-Rate Case 

The constraint which guarantees that the number of folded arc delays is nonnegative for 

single-rate arcs was derived in [28] to be 

DS
F(U ->■ V) 

r{U)-r(V)< (4.4) 
N 

This equation is a special case of the constraints which are derived in the next subsection 

for arcs with decimators or expanders. 

4.4.2    Multirate Cases 

For (4.2) to be useful, Dp(U -» V) > 0 must hold given a feasible schedule. The data- 

flow graph can be retimed to satisfy this condition. Let i[ and i'2 be the number of delays 

on arc U -> V after retiming. Using (4.2), the number of delays on the folded arc after 

retiming is 

D'P{U -> V) = Nu{Mi'2 + i\) -Pu + v-u. 

The values of i[ and i2 are related to i\ and i2 by 

i\ = n + Mr{Duv) - r(U) 

and 

i'2 = i2+r{V)-r{Duv), 

where r(u) and r(v) are the retiming values of nodes U and V, respectively, i.e., the 

number of times one delay is removed from each of the output arcs of the node and 

one delay is added to each of the input arcs of the node. According to multirate DSP 

fundamentals reviewed in Section 4.2, the retiming value of the decimator, r(Duv), is 

the number of times one delay is removed from its output and M delays are added to 
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its input. Substituting the expressions for i[ and i'2, we find 

D'P(V-*V)   =   Nu[M{i2+r{V)-r{Duv))+ix 

+Mr(Duv) - r(U)] -Pu + v-u 

=   D$(U-4V) + Nu{Mr(V)-r(U)), 

which is independent of r(Duv). We can retime the data-flow graph for folding by forcing 

D'^(U -» V) > 0, which gives 

D$(U -+ V) 
r(U) - Mr(V) < 

Nu (4-5) 

Similarly, we can use retiming to guarantee Df{U -+ V) > 0, where Df(J7 -> V) is 

computed as in (4.3). If i[ and i'2 are the number of delays on the arc after retiming, 

then 

D'£(U -> V) = Nv(Li[ + i'2) -Pu + v-u. 

The expressions for i[ and i'2 are 

»; = ti + r{Euv) - r(U) 

and 

i'2 = i2 + r{V)-Lr(Euv), 

where r(Euv) is the retiming value of the expander, which is the number of times we 

remove L delays from its output and add one delay to its input. Substituting, we get 

£'/([/-> 10    =   Nv[L(il+r(Euv)-r(U))+i2 + r{V)-Lr(Euv)]-Pu + v-u 

=   Df(U-+V) + Nv{r(V)-Lr(U)). 

as the number of folded arc delays after retiming. Forcing D'p(U -+ V) > 0 gives 

D§(U -> V) Lr{U) - r(V) < 
Nv 
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Caution must be exercised when retiming a multirate DFG due to its periodically 

time-varying nature. For example, consider the multirate DFG in Figure 4.8(a). If 

we retime this DFG by assigning the adder a retiming value of -1 and assigning the 

multiplier a retiming value of 0, we get the DFG in Figure 4.8(b). The problem is that 

these two circuits have completely different functionality. In the single-rate case, retiming 

an input node simply results in a delay the output signal, where this example shows that 

retiming an input node of a multirate DFG can completely change the functionality of 

the circuit. This issue is taken into consideration in the design example in Section 4.6. 

y(n) a y(n) a 

z,(n) z2(n) 

(a) (b) 

Figure 4.8: (a) A multirate DFG which computes zx{n) = a(x(2n) + y(2n)). '(b) Retimed 
version which computes z2{n) = a(x(2n - 1) + y(2n - 1)). 

4.5    Memory Requirements for Folded DSP Architectures 

In this section, we derive expressions for the minimum number of registers required by 

a folded architecture. The expressions are based on the assumption that a node U in a 

DFG is one of the following types: 

• Type S: Each outgoing edge of node U contains no decimators and no expanders. 

• Type D: Each outgoing edge of node U contains one decimator (| M) and no 

expanders. 

• Type E: Each outgoing edge of node U contains no decimators and one expander 

(tu). 

99 



We begin by computing the number of registers required to store the output signal of 

a Type S node. We then compute the number of registers required to store the output 

signals of Type E and Type D nodes. Finally, we compute the number of registers 

required to implement a DSP algorithm which may contain Type S, Type D, and Type E 

nodes. 

4.5.1    Type S Nodes 

Consider the simple case of an arc U -»• V as shown in Figure 4.5. The minimum number 

of registers required to implement the folded edge in Figure 4.5(b) can be calculated using 

life-time analysis. The idea is to compute the number of samples which exit pipelined 

processor Hu and enter processor Hy prior to time unit K. By subtracting the number 

of samples which enter Hy from the number of samples which exit Hu, we find the 

number of live samples at time unit K. The minimum number of registers required to 

implement the folded edge is the maximum number of live samples over all K. 

As in Section 4.3, we assume that the /-th iteration of nodes U and V are scheduled 

to execute at time units Nyl + u and Nyl + v, respectively. We found in Section 4.3 that 

for this to be feasible Nu = Nv must hold. If we let xt, I > 0, be the result of the /-th 

iteration of node U, then the production time of xi, which is the time unit that n exits 

pipelined processor Hv in Figure 4.5(b), is pXt = Nul + u + Pv. The consumption time 

of xi, which is the time unit that xt enters processor Hy, is cx, = Px, + Df{U -> V). 

The number of samples which have production times prior to time unit K (i.e., which 

satisfy pXl < K) is 

rp,u(K) = 
K -Pxo 

(4.6) 
Nu 

where \x] is the ceiling of x, which denotes the smallest integer greater than or equal 

to x. The number of samples with consumption times prior to time unit K (i.e., which 
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satisfy cX[ < K) is 

rc,u(K) = 
K-c XQ 

Nu 
(4.7) 

We define xi to be live over the interval (pXl,cXl]. Using this definition, we find that the 

number of samples that are live at time unit K is given by ruveiu(K) — rp>u{K)-rCtu(K), 

which is 

ruve,u{K) = 
'K-pX0' 

Nu 
— 

'K-cxo' 
Nu 

(4.8) 

The minimum number of registers required to implement the Df (U -> V) delays in 

Figure 4.5(b) is the maximum value of ruvey{K) over all K. The value of nivey(K) is 

periodic in K with period Nu because the folded architecture operates periodically with 

period Nu- Therefore, we only need to evaluate (4.8) for Nu consecutive time units. 

Evaluating (4.8) at time units K = qNu + n for some integer q and n € [0, Nu) results 

in the number of live samples at time partition n, given by 

'qNu + n-pXo 
riive,u(n)   = 

Nu 

"  ~ PXQ 

Nu 

qNu + n-(pX0+Ds
F(U^V)) 

Nu 

n-{pX0+Ds
F{U^V)) 

Nu 

The minimum number of registers required to implement the Dp(U -> V) delays is the 

maximum value of rnV(,tu{n) over the interval n G [0, Nu), i.e., 

rS =   JS^ , {riive,u(n)} . 
ne[0,Wt/) 

If we let B = -pXo, A = D^(U ->• V), and N = Nu, then Lemma 3.1 can be used to 

show that 

(max) 
rlive,U 

DS
F{U -» V) 

Nu 

is the minimum number of registers required to implement the folded edge in Fig- 

ure 4.5(b). 
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The more general case, where the output of the node is allowed to be the source of 

one or more arcs, is now considered. Let S\j be the set of outgoing edges of node U. We 

assume for this discussion that node U is a Type S node. 

If xi is an output sample of node U, then the latest time unit in which x\ is scheduled 

to be used by a processor is 

ex, =Px(+max {£>£([/4?)} (4.9) 

If we let 

Dffir> = mK{Ds
F(U±-l)}, 

then (4.9) can be rewritten as 

Prj — Pxi T *sFU 

The expressions for rPtU(K) and rc<u(K) for the output signal of node U are the same 

as in (4.6) and (4.7), and the number of live samples at time unit K is given by (4.8). 

Substituting pxo =u + Pv, cXo = pXo + DS
F
{™ax\ and K = qNv + n into (4.8) gives the 

number of live samples at time partition n e [0,Nu), which is 

rlive,u{n) = 
n-Pxo 

Nu 
n ~ Pxo - DFU 

Nu 
(4.10) 

Lemma 3.1 can be used to show that the maximum of the expression in (4.10) for 

ne [0,Nu) is 

(max) _ 
rlive,U — 

D S(max) 
F,U 
Nu 

which is the minimum number of registers required to implement the Type S node. 

Example 4.1  Consider the Type S node in Figure 4.9(a), where the the iteration periods 

for the nodes are Nu = NVl = NVi = 2.   The folding orders for the nodes are u = 0, 
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Vi = 0, and u2 = 1, and we assume that node U is executed by a single-stage pipelined 

processor, i.e., Py = 1. The folding equations are 

£>£([/-*Vi)    =   2(2)-1+0-0 = 3 

Df(U->V2)   =   2(1)-1 + 1-0 = 2, 

so DF,U 
X  = max (3) 2} = 3.  The minimum number of registers required to implement 

this Type S node is 

m 
= 2. 

This can also be seen in the lifetime chart in Figure 4.9(b), where the maximum number 

of live samples for any time step is 2. 

D D -© 
-® 

Time 
o 
l 
2 
3 
4 
5 
6 
7 
8 
9 
10 

# live samples 

(a) (b) 

Figure 4.9:   (a) A Type S node U.   (b) The lifetime chart of samples in the folded 
architecture. 

4.5.2    Type E Nodes 

In this section we show how to compute the minimum number of registers required to 

store the output signal of a Type E node. We begin by computing the minimum number 

of registers required to implement the folded edge in Figure 4.7(b). Let xi be the output 

of the Z-th iteration of U, which is available at pX[ = Nvl + u + Py.   This sample is 
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consumed by V at cXl = pXl + Df(U ->■ V).  At time unit K, the number of samples 

with pX{ < K is 

~K -Pxo' 
rP,u(K) = 

Nu 

One sample of xt is produced by node U every Nv time units. Each of these samples is 

consumed by node V, so one sample of X[ must be consumed by node V every Nu time 

units in order to avoid a build-up or deficiency of samples of xi on the folded arc. Since 

node V consumes one sample of xi every Nu time units, the number of samples with 

cI( < K is 

rc,u(K) = 
K-< -10 

Nu 

Keeping Figure 4.7 in mind, it is interesting to note that while U produces a sample 

of xi every Nu time units and V consumes a sample of xi every Nu time units, node 

V is actually executed in hardware once every Ny = Nu/L time units. As a result, 

only (l/Z,)-th of the executions of node V in hardware are used to process the output 

of node U. In a typical multirate system, node V will have L input arcs, each of which 

occupies (l/L)-th of the executions of V in hardware, so all executions of V in hardware 

are utilized. 

The number of live samples of x; at time unit K is 

riwe,u(K) = K -Pxo' 
Nu 

— 
K -cX0' 

Nu 
(4.11) 

Substituting K = qNv + n and cxo = pXo + D§(U ->• V) gives 

riive,u{n) 
n-Pxo 

Nu 

n-(pX0 + Df{U^V)) 

Nu 

which is the number of live samples of Xj at time partition n 6 [0, Nu). Lemma 3.1 can 

be used to find the minimum number of registers required to implement the folded arc, 
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which is 

(max) , /   \ i riive,u =   jftax   {rKw.,£/(n)} = 
Df(U -» V) 

Computing the memory requirements for a general Type E node, i.e., where the 

output of node U can be input to several other nodes after expansion by L, is quite 

simple. Let £u be the set of outgoing edges of node U, and let 

i?^=m«{z>f(tf4?)}. 

The production time of xt is pXl = Nul + u + Pv, and the consumption time is cx, = 

Pi, + DF™ax . The number of live samples at time unit K is given by (4.11), so we can 

substitute K = qNy + n along with expressions for pxo and cI0 to get 

riive,u(n) = 
Nu 

n-(pX0 + DE
F^) 

Nu 

and it follows from Lemma 3.1 that 

(max) r /   \ i rlive,u =    max   {rHve,u(n)} = 
D E(max) 

F,U 

Nu 

Example 4.2 Consider the Type E node in Figure 4.10(a) where node U has iteration 

period Nu = 6 and nodes V\ and V2 have iteration period NVl = Ny2 - 2. The folding 

orders for the nodes are u = 2, vi = 0, and u2 = 1, and we assume that node U is 

executed by a single-stage pipelined processor, i.e., Pu = 1.  The folding equations are 

Df{U-*Vi)   =   2(3(2)+0)-1+0-2 = 9 

D${U-+V2)   =   2(3(2)+ 1)-1 + 1-2 = 12, 

50 ^F,u       ~ max {9> 12} = 12. The minimum number of registers required to implement 

this Type E node is 

T121 
= 2. 

12 
6 

This can also be seen in the lifetime chart in Figure 4-10(b), where the maximum number 

of live samples for any time step is 2. 
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Figure 4.10:   (a) A Type E node U.   (b) The lifetime chart of samples in the folded 
architecture. 

4.5.3    Type D Nodes 

In this section we show how to compute the minimum number of registers required 

to store the output signal of a Type D node. We begin by computing the minimum 

number of registers required to implement the folded edge in Figure 4.6(b). Let xi, 

/ > 0, be the result of the l-th. iteration of U. The first step is to partition n into M 

subsequences xf = XMJ+W. for j > 0 and m 6 [0,M). We must now determine which 

of these M subsequences of X[ is consumed by node V. To determine this, recall that 

y{k) = x{M(k - i2) - h) in Figure 4.6(a). This can be rewritten as y(k) = x(Mk2 + &i) 

where 

k2 = k-i2-   -T7 
M 
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and 

ki = M 
M -n- 

Notice here that 0 < kx < M - 1 always holds.   Based on this analysis, we can see 

that node V in Figure 4.6(a) consumes the subsequence xm = XMj+m for j > 0 and 

Sample xf is output from pipelined processor H\j at time unit pxm = Nu(Mj + m) + 

u + Py. This sample is input to processor Hy at time unit cxm = pxm + Dp(U -¥ V). 

One can see from these expressions that one sample of x^ is produced and consumed 

every Ny = MNu time units.   At time unit K, the number of samples of xj with 

pxm < K is 

rP,un(K) = 
■K-v, 

and the number with consumption times satisfying cxm < K is 

rc,um(K) = 

The number of live samples of x^ at time unit K is 

riive,Um(K) 
Nv 

- 
K ~Cxm- 

Nv 
(4.12) 

Substituting K = qNv + n for integer q and n G [0, Nv) and cx™ = pxm + D$(U -4 V) 

gives 

riive,um{n) = 
Nv 

n-(Pxo + D$(U^V)) 
Nv 

Using Lemma 3.1, we find that the number of registers required to implement the folded 

edge in Figure 4.6(b) is 

(max) r /   \ ■> rlive,u =    max   {rlive,u(n)} 
D$(U->V) 

Nv 

We now consider the memory requirements for a general Type D node, where the 

output of node U may be the input to several nodes. Let S\jm denote the set of outgoing 
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edges of node U which are incident into nodes which consume the subsequence x^. In 

other words, each edge e e SUm satisfies M [^] - %x = m, where ti is the number of 

delays on e between U and the decimator on e. 

The number of live samples at time unit K for the edges in £Um is given by (4.12). 

The production time of xf is still psm = Nu(Mj + m) + u + Pv. The consumption time 

is now cxm = Pxm + Dp^x\ where 

n - (Num + u + Pv) 
Nv 

n - (Num + u + Pu + 0%™"°) 

Nv 

Using these expressions along with K = qNv + n in (4.12) gives 

riive,um{n) = 

as the number of live samples of subsequence xf at time partition n € [0, Nv). 

The minimum number of registers required to implement the edges in £Um is 

(max) r /   \ i r«ve,um = n™xv){riive,um(n)}. 

(4.13) 

(4.14) 

Lemma 3.1 can be used to show that 

Uve,Un 

j-.D(max) 
UF,Um 

Nv 
(4.15) 

The amount of memory required to store xMl+m can be determined using (4.15) for 

each m € [0,M). Therefore, one might mistakenly assume that the number of registers 

required to store all output samples of U is the sum of the minimum number of registers 

required to store each of the M subsequences xf, i.e., an incorrect expression for the 

minimum number of registers required to store the output samples of node U is 

M-l 

771=0 

D D(max) 
F,Um 

NV 
(4.16) 

108 



The correct technique is to find the maximum value over n 6 [0,NV) of the sum of the 

number of live samples for the M subsequences xf. Therefore, to examine the total 

number of live samples at time partition n G [0, iV», we use 

ruve,u{n) = J2 riive,um{n), (4.17) 
m=0 

and take the maximum of this expression. Combining (4.17) with (4.14) results in 

"n - (Num + u + Pu + D%™x)) 
rlive,u{n) =   ^2 

m=0 

M_1 ''n-iNum + u + Pu) 
Nv Nv 

(4.18) 

The minimum number registers required to store the output samples of node U is the 

maximum of rliveiU(n) over the interval [0,Ny), given by 

rS=    max . {ruve,u{n)} . (4.19) 
n£[0,Nv) 

We now summarize the technique for determining the minimum number of registers 

required to implement the output of a Type D node. 

1. Partition the outgoing edges of node U into M sets £(/m, where an edge e G Sum 

has i\ delays between U and the decimator on e, and M \^\ - i\ = m holds. 

2. Compute the quantity in (4.13) for m € [0,M). 

3. Compute the minimum number of registers using (4.18) and (4.19). 

Example 4.3 In this example we compute the memory requirements for the Type D 

node in Figure ^.11. The iteration periods of the nodes are Nu = 2 and Ny{ = 6 for 

i = 0,1,2,3. The folding orders are u = 1, v0 = 1, ui = 2, v<i = 4, and v3 = 5. Node U 

is assigned to a processor which is pipelined by one stage, i.e., Pu = 1. Let e* be the 

label of the edge from node U to node V{, i.e., the four edges of the DFG are U 4 Vi 
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for i = 0,1,2,3. Recall that £Um is the set of edges which connect node U to nodes 

which consume samples x(Ml + m), m e [0,M), where x(n) is the output of node U, so 

£uo = {e2,e3}, £ui = {eo}, and £u2 = {e\}. The folding equations are 

D$(U%Vo) = 2(3(1)+2)-1 + 1-1 = 9 

D$(U%Vi) = 2(3(0)+ 1)-1 + 2-1 = 2 

D%{U%V2) = 2(3(0) +3)-l+4-l = 8 

D${U%V3) = 2(3(2)+0)-1 + 5-1 = 15, 

and the values ofDp^' are as shown in Table 4.1. 

Table 4.1: Values of D(™^ for Example 4.3. 

m 0 1 2 
n(mai) 15 9 2 

u 

2D 13 -   D 

D \3 

3D 13 

13 2D 

Figure 4.11: A Type D node U with several fanout arcs. 

The correct way to compute the minimum number of registers is to use (4-19), which 

for this example is 

(max) I  v-"* 

n€[0,6) . m=0 

n - (2m + 1 + 1) n-(2m + l + l + £>g^Ql)) 
6 
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=    max < 
n€[0,6) l 

"n-2' 
6 

- 
"n-17" 

6 
+ 'n — 4' 

6 
- 

"n-13" 
6 

+ n — 6" 
6 

- 
"n-8" 

6 

=   max{4,5,4,4,4,5} = 5. 

To see that (4-16) does not compute the minimum number of registers, note that (4-16) 

gives 

m=0 

p.D(max) 
UFfJm = 3 + 2 + 1 = 6, 

which is one larger than the minimum number of required registers. 

The lifetime chart [51] which verifies that 5 registers are required is shown in Fig- 

ure 4.12. 

4.5.4    Memory requirements for a general DFG 

Consider a DFG, where a node in the DFG can be a Type S, Type D, or Type E node. 

Let U denote the set of nodes in the DFG which are Type S, Type D, or Type E nodes. 

Based on the derivations of this section, we can write the expression for the number of 

live samples in the folded architecture for time unit n as 

riive(n) = 2J rHve,u(n), 
ueu 

(4.20) 

where the expressions for rnvey(n) are summarized in Table 4.2. The minimum number 

of registers required to implement this architecture is the maximum value of rnve(n) over 

the interval [0, Nicm), where JV/cm is the least common multiple of the denominators of all 

of the ceiling functions in (4.20). These concepts are now demonstrated in the following 

example. This example is intended to demonstrate the memory minimization techniques 

for multirate folding that are introduced in this section. Examples which demonstrate 

how to use multirate folding to synthesize useful architectures, such as those for M-ary 

tree structured filter banks, are given in Section 4.6 and in [36]. 
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Figure 4.12: The lifetime chart for Example 4.3. The folded implementation requires 5 
registers since this is the maximum number of live samples at any time step. 

Example 4.4 Consider the multirate DFG in Figure 4.13. In this figure, A is a Type D 

node, B and C are Type S nodes, D and E are Type E nodes, and F is a sink node. 

The iteration periods for the nodes are NA = Np = 1 and NB = ATC = ATD = NE = 2. 

The folding orders are a = 0, b = 1, c = 0, d = 0, e = 1, and f = 0. Each node is 

executed in hardware by a processor which is pipelined by one stage, so PA = PB = Pc = 

PD = PE = PF = 1. In the architecture, nodes B and C are time multiplexed to the 

same processor, and nodes D and E are time multiplexed to the same processor. Based 
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Table 4.2: Summary of the expressions for ruveyU(n) for the various types of nodes. Note 
that u is the folding order of node U, and P\j is the number of pipelining stages in 
hardware unit Hy which executes node U. 

Node Type Expression for rnvep{n) 

S rn-fu+Pu)"! n-iu+Pu+Dp™*))' 
N 

D '\n-(Num+u+Pu)~\ n-(Num+u+Pu+D^™X))' 
Nv 

) 

E rn-(u+Ptr)l 
1        Nu - 

~ n-(u+Pu+DE
F
{™ax))~ 

Nu 

-1 

\2 

\2 
-1 

' 
-i 

z 

"  V 

Figure 4.13: Multirate DFG for Example 4.4. 

on these parameters, the folding equations are 

D$(A -> B) 

D${A -». C) 

DS
F(B -»• D) 

DS
F(B -> E) 

DS
F(C -> D) 

DS
F{C -> E) 

Df{D -> F) 

1(2(1)+0)-1 + 1-0 = 2 

1(2(1)+ 1)-1 + 0-0 = 2 

2(1)-1 + 0-1 = 0 

2(1)-1 + 1-1 = 1 

2(1)-1 + 0-0 = 1 

2(1)-1 + 1-0 = 2 

1(2(1) + !)-1 + 0-0 = 2 
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Df(D->F)   =   1(2(1)+0)-1+0-1 = 0. 

The maximum fanout values are ^f = 2, D$™x) = 2, DS
F^

ax) = 1, DS
F^

ax} = 2, 

DFD = 2, and Z?F E =0. Recall that node A has two maximum fanout values (for 

m = 0 and m = 1) because it is a Type D node with decimation by M = 2 on each of its 

output arcs. 

The number of live samples at time partition n is given by 

riivein) = ^2 nive,u{n) 
Ue{A,B,C,D,E] 

which is 

riive(n) 
'n -11 "n -31 "n -21 "n -41 'n -21 ~n -31 

2 2 
+ 

2 2 
+ 

2 2 

+ "n — 
2 

1" "n — 
2 

3" 
F 

"n — 
2 

r 'n — 
2 

3" + 
"n — 

2 
2- "n — 

2 
2- 

w/iere i/ie ,/irst two terms are for AQ, the next two for A\ followed by two terms each for 

nodes B, C, D, and E.  The minimum number of registers required for the architecture 

is 

r£eQl) =   max {r(i„e(n)} = max{4,5} = 5. 
n6{0,l} 

One implementation which uses 5 registers is shown in Figure 4-H> where processor Pi 

executes node A, processor P2 executes nodes B and C, processor P3 executes nodes D 

and E, and processor P4 executes node F. 

4.6    Design Example 

In this section we give an example which illustrates how the folding equations, retiming 

for folding constraints, and memory minimization can be used to synthesize a single-rate 

architecture for a multirate DSP algorithm. The algorithm we consider is the three-level 
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2/+1 

OUT 

Figure 4.14: Folded architecture for Example 4.4. D denotes an internal pipelining delay, 
while R{ denote external registers. This implementation uses five registers, which is the 
minimum value computed in the example. 

orthogonal discrete wavelet transform analysis filter bank which uses third-order wavelet 

filters, as shown in Figure 4.15 [5]. The schedule for the architecture is given in Table 4.3. 

The steps we take in deriving the folded architecture are as follows: 

1. Write the folding equations for the DFG. 

2. Write the retiming-for-folding constraints and find a solution. 

3. Write the folding equations for the retimed DFG. 

4. Determine the memory requirements for the folded architecture. 

5. Allocate data to the minimum number of registers. 

6. Draw the folded architecture. 

Each of these steps is described in detail in the following subsections. 
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hhh 

Figure 4.15: A three-level orthogonal discrete wavelet transform analysis filter bank 
which uses third-order wavelet filters. 

4.6.1    Folding Equations for the Original DFG 

The multirate DFG in Figure 4.15 has 36 single-rate edges and 6 multirate edges which 

contain decimators. The number of folded delays on each edge prior to retiming is given 

in Table 4.4 for the single-rate edges and in Table 4.5 for the multirate edges. These 

values are computed by using the number of delays on the edges in the DFG and the 

schedule in Table 4.3 and plugging these values into (4.1) and (4.2). 
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Table 4.3: Schedule for the three-level orthonormal DWT example. The numbers across 
the top of the table represent the eight time partitions. An X denotes a null operation, 

ear that the folc ed architecture will have 87.5% hardware utilization. 
0 1 2 3 4 5 6 7 

Processor Mi M10 Mu Mio M12 M10 Mu Mio X 
Processor M2 M20 M2i M20 M22 M20 M21 M20 X 
Processor M3 M30 X M30 M31 M30 M32 M30 M31 

Processor M4 M40 X M40 M41 M40 M42 M40 M41 

Processor M5 M>2 M50 M51 M>0 X M50 M51 A^50 
Processor Me M62 M60 Mei M6o X M6o Mei M6o 
Processor A\ Aw An Aw X Aio An Aio ^12 
Processor A2 A20 A21 A20 X A20 ^21 A20 ^22 
Processor A3 A31 A30 A32 A30 A31 ^30 X ^30 
Processor A4 A41 A40 A42 ^40 A41 ^40 X ^40 

4.6.2 Retiming for Folding 

There are 36 retiming for folding equations for single-rate edges and 6 for multirate edges. 

These are given in Table 4.4 for the single-rate edges and in Table 4.5 for the multirate 

edges. The retiming for folding equations used are (4.4) and (4.5). The columns labeled 

Ruv give the values for the right-hand-side of the inequalities for each edge. Note that 

we also impose the constraint r(IN) = 0. This constraint avoids the possibility of adding 

new delays at the input which can have the effect of changing the functionality of the 

circuit as was described in Section 4.4. The columns labeled r(U) and r(V) in Tables 4.4 

and 4.5 give a solution to these inequalities. 

4.6.3 Folding Equations for the Retimed DFG 

Based on the retiming values for the nodes, folding equations can be written for the 

retimed graph. Because the retiming solutions satisfy all of the retiming-for-folding 

equations, the folding equations now result in a nonnegative number of delays for each 

folded edge. The new folding equations are given in Table 4.4 for the single-rate edges 
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and in Table 4.5 for the multirate edges. 

4.6.4 Memory Requirements of the Folded Architecture 

The memory in the folded architecture can be found using (4.20). Since the architecture 

implements the retimed DFG, the number of delays on the folded edges for the retimed 

graph are used in the expressions in Table 4.2. An important point is that an edge with 

a decimator can change from set E\ji to £us as a result of retiming, and this change 

must be taken into account to get an accurate evaluation of the memory required by the 

folded architecture. Taking this into account, the minimum number of registers required 

to implement the folded architecture is 14. 

4.6.5 Allocate Data to the Minimum Number of Registers 

To keep routing simple, we attempted to localize data within the architecture while still 

using only 14 registers. For example, we were able to allow only the output samples of 

multiplier M\ to occupy registers R\ and R2 (see Figure 4.16), which avoids routing the 

outputs of other processors to these two registers. Allocation techniques proposed in [51] 

were used to allocate the data to the 14 registers. 

4.6.6 The Folded Architecture 

The folded architecture is shown in Figure 4.16. This architecture uses the theoretical 

lower limit of 14 registers. Delays denoted as D are internal pipelining delays, while 

the 14 external registers are labeled R{. The fact that this architecture has the same 

functionality as the DFG shown in Figure 4.15 has been verified by simulation using 

Matlab Simulink. 

This is not the only architecture which can be designed for this algorithm using 
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multirate folding. We have also designed a different architecture, which uses only three 

multipliers and two adders, using the systematic multirate folding technique proposed 

in this chapter for the three-level orthogonal discrete wavelet transform which uses 7-th 

order FIR filters, but this example is not included to save space. This demonstrates 

that multirate folding can be used to design a broad class of single-rate architectures for 

multirate DSP applications. 

E Gj* 
-}o-[iü3-Iüii -fo-jänU-o D-JRÜL- 

!?*0 941*1 Xp.,^-1 

Figure 4.16: Folded architecture for the three-level orthogonal discrete wavelet transform 
analysis filter bank which uses third-order wavelet filters. If an input to a switch is not 
labeled, then this input is switched in at all time units not assigned to other inputs of 
the switch. 

4.7    Conclusions 

A novel multirate folding transformation has been developed for mapping multirate 

DSP algorithms to single-rate VLSI architectures. This transformation can be used 

to synthesize architectures for a wide range of DSP applications which use multirate 

algorithms, such as signal coding and analysis and adaptive signal processing. 

Multirate folding equations were derived for arcs which contain decimators or ex- 

panders. In both cases, the folding equation contains single-rate folding as a special 

case.    These folding equations were then used to solve two important related prob- 
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Table 4.4: Folding and retiming equations for the single-rate edges in the DWT example. 
timing- for-fol ding equation for edj ;eC/^ V is r U)-r (V) < Ruv- 

U V 
folded delays 

before retiming 
r(U) r(V) Ruv 

folded delays 
after retiming 

Afio -4l0 -2 0 2 -1 2 
Mio M30 -2 0 1 —1 0 
M2o ^20 -2 0 2 -1 2 
M2o M40 -2 0 1 -1 0 
M30 ^20 -2 1 2 -1 0 
M40 -4io -2 1 2 -1 0 
-4io A30 0 2 3 0 2 
-4io M50 0 2 2 0 0 
-420 -440 2 2 3 1 4 
A20 M60 2 2 2 1 2 
M50 -44o -2 2 3 -1 0 
Mm -43o -2 2 3 -1 0 
Mn An -2 2 3 -1 2 
Mn M31 0 2 2 0 0 
M2i A2i -2 2 3 -1 2 
M2i M41 0 2 2 0 0 
Mn M\ -4 2 3 -1 0 
M41 An -4 2 3 -1 0 
An -43l -2 3 4 -1 2 
An M51 0 3 3 0 0 
A2x -441 2 3 4 0 6 
A2x Afei 4 3 3 1 4 
M51 -441 -4 3 4 -1 0 
Afei -431 -4 3 4 -1 0 
Mi 2 -4l2 2 2 2 0 2 
M12 M32 0 2 2 0 0 
M22 -422 2 2 2 0 2 
M22 M42 0 2 2 0 0 
M32 -422 0 2 2 0 0 
M42 -4l2 0 2 2 0 0 
-A12 -432 -6 2 3 -1 2 
-4l2 M52 -8 2 3 -1 0 
A22 -442 2 2 3 0 10 
A22 M62 0 2 3 0 8 
M52 -442 0 3 3 0 0 
M62 -432 0 3 3 0 0 
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Table 4.5: Folding and retiming equations for the multirate edges in the DWT example. 
timing -for-fol ding equation for ed get/-) V is r (C/)-2 r(V) < Ruv. 

U V folded delays 
before retiming 

r(U) r(V) ■Rf/V 
folded delays 
after retiming 

IN Mio 0 0 0 0 0 
IN Af20 1 0 0 1 1 

■A30 Mn -1 3 2 -1 1 
MQ Mn 1 3 2 0 3 
Ml Mn 2 4 2 0 2 
4»i M22 6 4 2 1 6 

lems, namely, memory minimization in folded architectures and retiming for folding. By 

deriving the multirate folding equations and solving these related problems, we have 

formalized several crucial steps used in mapping multirate DSP algorithms to efficient 

VLSI architectures. 

A detailed design example of a three-level discrete wavelet transform analysis filter 

bank was given. This example demonstrated how the multirate folding equations, along 

with retiming for folding and memory minimization, can be used to design single-rate 

architectures for multirate algorithms. Multirate folding can be used to design architec- 

tures for a wide variety of filter banks as described in [36]. 
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Chapter 5 

Two-Dimensional Retiming 

5.1    Introduction 

Retiming [27] is a technique used to move delay elements around in a circuit without 

changing its functionality. One effect of changing the locations of the delays is that 

combinational rippling can be reduced, allowing the the circuit to be clocked at a higher 

rate. Reducing combinational rippling also decreases the dynamic power dissipation in 

the circuit [48] and allows the circuit to be operated with a lower supply voltage, both of 

which lead to low power implementations [67]. Another effect of changing the locations 

of delays is that the number of delay elements required can be reduced, resulting in 

area-efficient implementations. In addition to retiming for high speed, low power, and 

low area implementations, retiming is also an important step in scheduling for high-level 

synthesis [11] -[38]. All of these applications of retiming have been studied for circuits 

which operate on one-dimensional signals, such as digital audio. 

Two-dimensional retiming [33, 34] is used to retime data-flow graphs (DFGs) which 

operate on two-dimensional signals such as images. As digital image processing becomes 

more popular in multimedia applications, the need for high speed, low area, and low 

power implementations of multidimensional digital signal processing (DSP) algorithms 
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increases. Like one-dimensional retiming [27], two-dimensional retiming can be used 

to increase the sample rate, reduce the area, and reduce the power consumed by a 

synchronous circuit. 

Techniques for reducing the execution times of 2-D DSP algorithms have been con- 

sidered in the past. One way to speed up these algorithms is to process many iterations 

concurrently, and it has been shown that this is often possible if the 2-D data are not 

processed in line-by-line or column-by-column order, but rather are processed diagonally 

[69, 70]. This technique requires an increase in the number of arithmetic units. Another 

way to speed up these algorithms is to reduce the sample period using 2-D retiming tech- 

niques [33, 34]. This technique does not require an increase in the number of arithmetic 

units; however, as we show in this chapter, the algorithm for 2-D retiming in [34] often 

results in an implementation which requires significantly more memory than is actually 

needed. Since the area consumed by the implementation of a 2-D DSP algorithm can be 

dominated by memory requirements [71], it is important to keep the memory require- 

ments as small as possible. The algorithm for 2-D retiming in [33] is not very flexible 

because it is only compatible with some very specific processing orders of the data. 

In this chapter, we present two techniques for retiming two-dimensional data-flow 

graphs (2DFGs). Each of these techniques minimizes the amount of memory required to 

implement the 2DFG under a clock period constraint. The first technique, called ILP 

2-D retiming, is based on an integer linear programming (ILP) formulation which consid- 

ers the 2-D retiming formulation as a whole. While this technique gives excellent results, 

it has slow convergence for large 2DFGs. The second technique, called orthogonal 2-D 

retiming, is formulated by breaking ILP 2-D retiming into two linear programming prob- 

lems, where each problem can be solved in polynomial time. The downfall of orthogonal 

2-D retiming is that the results of the two linear programming problems can sometimes 
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be incompatible. A variation of orthogonal 2-D retiming called integer orthogonal 2-D 

retiming is also based on a linear programming formulation, and this technique solves the 

incompatibility problem which may be encountered using orthogonal 2-D retiming. The 

techniques presented in this chapter result in retimed 2DFGs which require less memory 

than than the technique in [34] and are compatible with considerably more processing 

orders of the data than the technique described in [33]. 

This chapter is organized as follows. Section 5.2 describes some specifics of two- 

dimensional data processing. Section 5.3 contains the ILP 2-D retiming formulation. 

Orthogonal 2-D retiming and integer orthogonal 2-D retiming are presented in Sec- 

tions 5.4 and 5.5, respectively. Comparisons with previous work are given in Section 5.6 

and our conclusions are in Section 5.7. 

5.2    Processing Two-Dimensional Data Sets 

A two-dimensional DSP algorithm can be represented using a two-dimensional data-flow 

graph (2DFG). A 2DFG G =< V, E, w, d > is a node-weighted and edge-weighted graph 

such that 

• V is the set of vertices (nodes) in G. The nodes represent computations. 

• E is the set of edges in G. The edges represent communication between the nodes. 

• w(e) is a 2 x 1 vector representing the dependency on edge e. 

• d(v) is a nonnegative scalar representing the computation time of node v. 

As an example, the 2DFG in Figure 5.1 describes the computation y(nuri2) — b + 

ax(ni + 1, ri2 — 1). An iteration is the execution of each node in the 2DFG exactly once. 
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x(n,,n2) 
X 

b 

y(n] ,n2) .+ 
Figure 5.1: A 2DFG which describes the computation y(n\,n2) = b + ax(n\ + l,n,2 — 1). 

5.2.1 Overview of Two-Dimensional Retiming 

The 1-D retiming equation given in [27] for the edge u A v in a 1-D DFG is given by 

wr(e) = w(e) + r(v) — r(u), 

where w(e) and wr(e) are the numbers of delays on e before and after retiming, respec- 

tively, and r(u) and r(v) are the retiming values of nodes u and v, respectively. The 2-D 

retiming equation for the edge u A v in a 2DFG is given by 

wr(e) =w(e)+ r(u)-r(u), (5.1) 

where w(e) and wr(e) are the 2 x 1 dependence vectors on e before and after retim- 

ing, respectively, and r(u) and r(v) are the 2x1 retiming vectors of nodes u and v, 

respectively. 

A 1-D retiming r is said to be legal if wr(e) > 0 for all e e E. The conditions for a 

legal 2-D retiming are derived in Section 5.3.1. 

5.2.2 Types of Parallelism Available in 2-D Signal Processing 

There are two types of parallelism available in 2-D signal processing. The first type of 

parallelism is inter-iteration parallelism which can be achieved by increasing the amount 

of hardware so that the multiple iterations can be executed concurrently. For example, 

consider the 2DFG in Figure 5.2(a) which implements j/(ni,n2) = ay{nx - 1,ri2) + 

Mni>n2 - 1) + x(ni,n2). Assume that this 2DFG is used to process a 3 x 3 data set. 
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Table 5.1: Four possible execution orders for the DFG in Figure 5.2(a) assuming a 3 x 3 
ata set. 

row-by-row 
serial 

column-by-column 
serial 

diagonal 
serial parallel 

Step 1 y(o,o) y(o,o) y(o,o) y(o,o) 
Step 2 y(i,o) y(o,i) y(i,o) y(0,l),y(l,0) 
Step 3 y(2,o) y(o,2) y(o,i) y(0,2),y(l,l),y(2,0) 
Step 4 y(o,i) y(i,o) y(2,o) y(l,2),y(2,l) 
Step 5 y(U) y(i,i) y(i,i) y(2,2) 
Step 6 y(2,i) y(i,2) y(o,2) - 
Step 7 y(o,2) y(2,o) y(2,i) — 
Step 8 1/(1,2) y(2,i) y(i,2) — 
Step 9 y(2,2) y(2,2) y(2,2) — 

The output values y(ni,ri2) are dependent on one another as shown in Figure 5.2(b), 

where, e.g., the arrow from y(l,0) to y(l,l) indicates that y(l,0) must be computed 

before y(l, 1) can be computed. Four possible execution orders are given in Table 5.1. 

x(n.,n2)    1^   ^  y(n,,n2) 

y(0,0) 
/X 

y(0,D    y(i,0) 
^N     /X 

y(0,2)      y(l,l)      y(2,0) 
X     /X     / 

yd,2)      y(2,l) 

y(2,2) 

(a) (b) 

Figure 5.2: (a) A 2DFG which describes the computation y(ni,n2) = ay(n\ — 1,712) + 
6y(ni,ri2 - 1) + x(n). (b) The dependencies for this 2DFG assuming it operates on a 
3x3 data set. 

While the three serial execution orders require a single hardware module and 9 time 

steps to execute, the parallel execution order requires 3 hardware modules and only five 

time steps to execute, where a hardware module is capable of executing one iteration in 
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one time step. The parallel execution order uses inter-iteration parallelism to speed-up 

the execution of the 2-D signal processing algorithm. 

The second type of parallelism is inter-operation parallelism. This involves retiming 

the 2DFG so operations can be executed in parallel, resulting in a shorter clock period. 

For the 2DFG in Figure 5.2(a), assume addition and multiplication require 1 and 2 time 

units, respectively. The minimum clock period for this 2DFG is 4 time units because 

there is a path through two adders and one multiplier (e.g., through nodes 4, 2, and 

1) which has no delays. As a result, the time required to process the 3 x 3 data set 

using a serial processing order is (4)(9) = 36 time units. The 2DFG in Figure 5.2(a) 

can be retimed as shown in Figure 5.3 assuming r(l) = [ 0 0 ]T, r(2) = [ 0 0 ]T, 

r(3) = [ -2 1 ]T, and r(4) = [ -1 0 ]T. This retimed 2DFG has a minimum clock 

period of 2 time units because the longest path with no delays is through a multiplier 

or two adders. The time required to process the 3x3 data set using the diagonal serial 

processing order is now (2) (9) = 18 time units, so 2-D retiming has allowed us to speed 

up the processing by a factor of 2. 

The reason that 2-D retiming allows the circuit to be clocked faster is because oper- 

ations in the retimed circuit can be executed in parallel. Table 5.2 shows some possible 

execution times for the nodes in the unretimed 2DFG (Figure 5.2(a)) and the retimed 

2DFG (Figure 5.3). Since multiplication and addition in the retimed 2DFG can be per- 

formed in parallel rather than sequentially, 2-D retiming allows for an implementation 

where operations are executed in parallel, hence the name inter-operation parallelism. 

The remainder of this chapter assumes that a 2-D data set is processed using a serial pro- 

cessing order, and we focus on exploiting inter-operation parallelism using 2-D retiming. 
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x(npn2)    \ y(nt ,n2) 

Figure 5.3: A retimed version of the 2DFG in Figure 5.2(a). 

Table 5.2: Possible execution times for the unretimed 2DFG in Figure 5.2(a) and the 
retimed 2DFG in Figure 5.3 assuming that addition and multiplication require 1 and 
2 units of time, respectively. The unretimed 2DFG does not allow addition and mul- 
tiplication to be executed in parallel, while the retimed 2DFG does allow addition and 

tiplication to be executed in parallel. 

time 
unretimed 2DFG retimed 2DFG 

node 1    node 2    node 3    node 4 node 1 node 2    node 3 node 4 
0 *             * *             * * 

1 *             * * * * 

2 * *             * * 

3 * * * * 

5.2.3    Processing Order 

A two-dimensional DSP algorithm can often be executed using several processing orders. 

This was demonstrated in the previous section where three serial processing orders were 

given in Table 5.1 for the 2DFG in Figure 5.2(a). A linear processing order is specified 

using a scanning vector s = [ s\ S2 ]T and an access vector a = [ a\ a-i ]T. Lines 

orthogonal to the scanning vector are called access lines, and sample (rai,ri2) on access 

line k satisfies nisi 4-n2«2 = k. The processing order is such that, for fci < fo, all samples 

on access line k\ are processed before the samples on access line fo. The access vector, 
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which is orthogonal to the scanning vector (s -a = 0), defines the order in which samples 

are processed on the access lines, such that sample n + a is processed immediately 

following sample n. Lines orthogonal to the access vector are called scanning lines, 

and sample (ni,n2) on scanning line k satisfies rna\ +n2a2 = k. As an example, the 

processing order in Figure 5.4 is described by s = [ 1 1 ]T and a = [ -1 1 ]T, and 

sample (2,4) is on access line 6 and scanning line 2. In addition to linear processing 

orders, nonlinear processing orders such as the Dovetail scan [72] also exist; however, 

this chapter considers only linear processing orders. 

5.3    An Integer Linear Programming Formulation of 2-D 
Retiming 

In this section we formulate the ILP 2-D retiming technique which considers causality, 

the desired clock period, and the memory cost of the 2-D retiming solution. 

5.3.1    Causality in 2-D Data Processing 

A dependency w(e) in a 1-D DFG must represent a causal relationship. If the edge 

u -> v has a negative number of delays, this indicates that node v is consuming data 

before node u has produced the data, and this is not practical from an implementation 

point of view. Causality restricts the number of delays on an edge in a 1-D DFG to be 

nonnegative, which can be written as w(e) > 0 for all e€ E. The expression w(e) > 0 for 

all e G E can be viewed as the condition for the compatibility between the dependencies 

and the order in which the data is processed (which is dictated by time). 

In 2DFGs, where the processing order is specified by s and a, there are two conditions 

for the compatibility between the dependencies and the processing order. These two 

conditions are the 2-D causality constraints.  The first causality constraint states that 
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a dependency w(e) on the edge u A v cannot point from access line k2 to access line 

k\ for ki < k2 because this would indicate that the data produced when access line k2 

is processed is consumed when access line ki is processed, and this violates causality 

because access line k2 is processed after access line fci. Mathematically, this causality 

constraint can be written as 

Causality Constraint 5.1 For all e € E, s • w(e) > 0 must hold. 

The second causality constraint states that if the dependency w(e) lies in the same 

direction as the access lines, then the dependency cannot point in the opposite direction 

as the access vector because this would mean that the dependency points to the opposite 

direction of processing of data. This can be expressed as 

Causality Constraint 5.2 For alleeE such that s-w(e) = 0, a-w(e) > 0 must hold. 

Example 5.1 For s = [ 1 1 )T and a = [ -1 1 )T, Figure 5.4 shows how four 

different dependencies would affect the sample at the (2,3) location. The dependency 

w(e) = [ 0 -1 ]T represents a non-causal relationship because the value computed when 

sample (2,4) is processed affects the value at sample (2,3), but sample (2,4) is processed 

after (2,3). This dependency violates the first causality constraint because s-w(e) = —1. 

The dependency w(e) = [ 0 1 ]T represents a causal relationship because the value 

computed when sample (2,2) is processed affects the value at sample (2,3), and sample 

(2,2) is processed before (2,3). This dependency satisfies the first causality constraint 

because s • w(e) = 1. The dependency w(e) = [ 1 -1 ]T represents a non-causal re- 

lationship because the value computed when sample (1,4) is processed affects the value 

at sample (2,3), but sample (1,4) is processed after (2,3). This dependency violates 

the second causality constraint because a • w(e) = -2 and s • w(e) = 0.   The depen- 
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dency w(e) = [ -1 1 ]T represents a causal relationship because the value computed 

when sample (3,2) is processed affects the value at sample (2,3), and sample (3,2) is 

processed before (2,3). This dependency satisfies the second causality constraint because 

a • w(e) = 2 and s • w(e) = 0. D 

scanning lines 

3 2 10 

(0.0) 
»►ni 

1 2 

Figure 5.4: The effect of four dependencies on sample (2.3). Processing starts at sample 
(0,0). 

Let Hmax be the maximum number of samples on any access line. Then the length 

of the longest access line is (Hmax - l)(a • a). In a practical situation, the length of 

each dependence vector is not greater than the length of the longest access line, and this 

implies that the projection of a dependence vector onto the access vector obeys 

ffmax(a-a) > |a-w(e)|. (5.2) 

This inequality is used in the following theorem to combine the two causality constraints 

into a single constraint. 

Theorem 5.1 Let (5.2) hold for all e e E. Then 

Hmax(a- ■ a)(s • w(e)) + a • w(e) > 0 
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if and only if the following hold: 

1. s • w(e) > 0, and 

2. a • w(e) > 0 if s • w(e) = 0. 

Proof: In the first part of the proof, we show that (5.3) implies 

1. s • w(e) > 0, and 

2. a-w(e) >0 ifs-w(e) =0. 

The expression in (5.3) can be written as 

. wn > ~(a-w(e)) 
■"max (.8-' ft) 

Using (5.2), this can be written as s-w(e) > -1. Since s-w(e) is an integer, this implies 

s • w(e) > 0. When s • w(e) = 0, the expression in (5.3) simplifies to a • w(e) > 0. 

In the second part of the proof, we show that 

1. s • w(e) > 0, and 

2. a-w(e) >0 ifs-w(e) =0 

imply (5.3).   If s • w(e) > 1, then (5.3) holds because (5.2) states that a • w(e)  > 

-Hmaxia. -a). If s • w(e) = 0, then (5.3) holds because a • w(e) > 0. ü 

If we let 

F(x) = Hmax(& ■ a)(s • x) + a • x, 

then causality can be written as F(w(e)) > 0 for all e G E. This definition of F(x) is 

used throughout the remainder of the chapter. For a retimed 2DFG Gr, causality can 

be written as F(wr(e)) > 0 for all e G E.  A 2-D retiming r from G to Gr is legal if 

F(w(e)) > 0 for all e 6 E. 
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5.3.2    The Clock Period Constraints 

In this section we develop the constraints which can be used to specify a desired clock 

period for the retimed 2DFG. Let p = v0 % vx 4 • • • e^' vk be a path in the 2DFG. 

The delay of the path is d(p) = Yli=od(vi) and the dependency of the path is w(p) = 

11i=o w(et)- The clock period 9(G) is defined to be the maximum propagation delay 

through which any signal must ripple between clock cycles. Mathematically, 

9(G) = max{d(p) : w(p) = 0}. 

The derivations in this section follow the derivations in [27]. 

Let 

W(u,v) = min{F(w(p)) : u A v} 

and 

D(u,v) = max{d(p) :u 1+v   and   F(w(p)) = W(u,v)}. 

Lemma 5.2 Let G be a 2DFG, and let c be any positive real number. The following are 

equivalent. 

5.2.1 9(G) < c. 

5.2.2 For all vertices u and v in V, if D(u,v) > c, then W(u,v) > a  a. 

Proof: (5.2.1 =>■ 5.2.2): Suppose 9(G) < c and let u and v be vertices such that 

D(u,v) > c. Assume that W(u,v) < a a. If all edges in G are causal, then W(u,v) = 0, 

so there exists a path «4D with propagation delay d(p) = D(u, v) > c and F(vr(p)) = 

W(u,v) = 0, which implies w(p) = 0 and 9(G) > c. Contradiction. 

(5.2.2 =» 5.2.1):   Suppose 5.2.2 holds and let u A v be any path in G such that 

F(w(p)) = 0. Then we have W(u,v) = F(w(p)) = 0, which implies d(p) < D(u,v) < c 
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(this is the contrapositive of "if D(u,v) > c then W{u,v) > a- a"). This implies 5.2.1. 

D 

A critical path is any path «4« with F(w(p)) = W{u,v). Assume that r is a 2-D 

retiming that satisfies the causality constraints for a given processing order specified by 

s and a. Let Wr(u,v) and Dr(u,v) have the same definitions on the retimed graph Gr 

as W(u,v) and D(u,v) have on G. The following can be proven using techniques similar 

to those used for the 1-D case [27]. 

• Wr(u,v) = W{u,v) + F(r{v) - r(u)). 

• a path p is a critical path of Gr if and only if it is a critical path of G. 

• Dr{u,v) = D(u,v) for all connected u,v eV 

• the clock period $(Gr) is equal to D(u,v) for some u,v e V. 

Using these results, we can prove the following. 

Theorem 5.3 Let c be an arbitrary real number and let s and a be orthogonal vectors 

which specify a linear processing order. Then r is a legal retiming such that $(Gr) < c 

if and only if 

5.3.1 F(r(u) - r(v)) < F(w(e)) for every edge u 4 v ofG, and 

5.3.2 F(r(u) - r(u)) < W{u, v) - a • a for all vertices u, v € V such that D(u, v) > c. 

Proof: The retiming is legal if and only if 5.3.1 holds. If r is indeed a legal retiming 

of G, then by Lemma 5.2 the retimed circuit Gr has clock period $(Gr) < c under the 

condition that Wr(u, v) > a • a for all vertices u,v eV such that Dr{u, v) > c. Since we 

know Dr(u,v) = D{u,v) and Wr(u,v) = W{u,v) + F{r(v) - r(u)), GT has $(Gr) < c 
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under the condition that W(u,v) > -F(r(v) - r(u)) + a • a for all u,v G V such that 

D(u,v) > c. Since F(r(v) - r(u)) = -F(r{u) - r{v)), this is equivalent to 5.3.2. D 

5.3.3    The Memory Cost 

For the ILP formulation to be complete, it requires a linear approximation of the number 

of registers required to implement the retimed circuit. A linear approximation for the 

number of registers required to implement the dependency w(e) should consider the 

number of access lines and scanning lines crossed by the dependency. The number of 

access lines crossed is s • w(e), and the maximum number of samples in an access line 

is Hmax, so an upper bound on the number of registers required to store s • w(e) access 

lines is Hmax(s ■ w(e)). The number of scanning lines crossed by w(e) is a • w(e), and 

one register is required for a • a scanning lines that are crossed (to see this, consider that 

the dependency corresponding to a single sample delay is w(e) = a); so an estimate for 

the number of registers required due to scanning lines that are crossed is (a • w(e))/(a • 

a). The linear approximation for the total number of registers required to implement 

the dependency w(e) is Hmax(s • w(e)) + (a • w(e))/(a • a), which can be written as 

F(w(e))/(a-a). 

If a node has more than one output edge carrying the same signal (such a node is often 

called a fanout node), the number of registers required to implement these edges is the 

maximum number of registers on any one of them [21]. This is shown in Figure 5.5 for the 

1-D case, where the naive implementation in Figure 5.5(a) uses 1 + 3 + 7 = 11 registers 

while the efficient implementation in Figure 5.5(b) uses max(l,3,7) = 7 registers. Using 

this concept, the number of registers required to implement the output edges of node v 

is estimated to be 

Rv = max{F(wr(e))/(a • a)}. 
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The cost function can be minimized by using COST = J2vev Rv where Ry > F(wr(e)) 

for all edges v ->?. Note that this cost represents the number of memory locations scaled 

by a constant scale factor (a • a). 

D 

3Ö}—@ D 2D 

HZDHS)  -® 
(a) (b) 

Figure 5.5:   (a) Fanout implementation using 14-3 + 7 = 11 registers,   (b) Fanout 
implementation using max(l,3,7) = 7 registers. 

5.3.4    The Complete ILP 2-D Retiming Formulation 

Theorem 5.3 specifies the conditions for a retiming to be legal and satisfy a given clock 

period constraint. Combining this with the cost function, the complete ILP formulation 

of 2-D retiming is: Minimize COST = £„6K R» under the constraints 

1. Rv> F(wr(e)) for all edges v A? and all v € V (fanout constraint). 

2. F(r(u) - r{v)) < F(w(e)) for every edge u4uofG (causality constraint). 

3. F(r(u) - r(v)) < W(u,v) - a • a for all vertices u,v € V such that D(u,v) > c 

(clock period constraint). 

Example 5.2 Consider the 2DFG in Figure 5.6(a). Assume that the computation time 

for each node is 1 time unit. The goal is to retime this 2DFG to minimize the memory 

while achieving a clock period o/$(Gr) = 1 assuming an 8x8 data set and a processing 

order specified bys = [l 2 }T and&=[ -2 1 ]T. The maximum number of samples 

on an access line is Hmax = 4 and a-a = 5, so F(x) = 20(s-x)+a-x. The ILP formulation 
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is to minimize COST = R1 + R2 + R3 + R4 subject to the fanout constraints, the causality 

constraints, and the clock period constraints.  The five fanout constraints are 

Ri > 0 + F(r(2)-r(l)) 
Ri > 0 + F(r(3)-r(l)) 
Ä2 > 23 + F(r(4) - r(2)) 
A3 > 59 + F(r(4) - r(3)) 
A4 > 0 + F(r(l)-r(4)). 

The five causality constraints are 

F(r(l)-r(2)) < 0 
F(r(l)-r(3)) < 0 
F(r(2)-r(4)) < 23 
F(r(3)-r(4)) < 59 
F(r(4)-r(l)) < 0. 

The values ofW(u,v) and D{u,v) are given in Table 5.3, and based on these values the 

twelve clock period constraints are 

F(r(l 
F(r(l 
F(r(l 
F(r(2 
F(r(2 
F(r(2 
F(r(3 
F(r(3 
F(r(3 
F(r(4 
F(r(4 
F(r(4 

-r(2) 
-r(3) 
-r(4) 
-r(l) 
-r(3) 
-r(4) 
-r(l) 
-r(2) 
-r(4) 
-r(l) 
-r(2) 
-r(3) 

< -5 
< -5 
< 18 
< 18 
< 18 
< 18 
< 54 
< 54 
< 54 
< -5 
< -5 
< -5. 

The retiming solution, found using the IIP solver GAMS [63], is r(l) = [ 0 1 ]T, 

r(2) =[3 0]T, r(3) = [ 3 0 ]T, and r(4) = [2 0]T. The values of Ru R2, R3, 

and R4 are 13, 5, 41, and 5, respectively, and the total cost is COST = 64. The retimed 

2DFG is shown in Figure 5.6(b). 

A downfall of the ILP 2-D retiming is its slow convergence time. From our experiences, 

we have found that the ILP solver can take several minutes to find an optimal solution 

for 2DFGs with as few as 12 nodes. The linear programming formulation in the next 
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(a) (b) 

Figure 5.6: The (a) unretimed and (b) retimed 2DFGs referred to in Example 5.2. 

Table 5.3: The values of W(u,v) and D(u,v) for Example 5.2. 

W{u,v) 1 2 3 4 
1 0 0 0 23 
2 23 0 23 23 
3 59 59 0 59 
4 0 0 0 0 

D(u,v) 1 2 3 4 
1 1 2 2 3 
2 3 1 4 2 
3 3 4 1 2 
4 2 3 3 1 

section can be solved in polynomial time, resulting in significantly faster solution times 

than ILP 2-D retiming. 

5.4    Orthogonal 2-D Retiming 

Orthogonal two-dimensional retiming partitions the 2-D retiming problem into two 1- 

D retiming problems. These 1-D retiming problems, which we call s-retiming and a- 

retiming, can be solved in polynomial time using techniques similar to those introduced 

in [27]. By partitioning the 2-D retiming problem into two 1-D retiming problems, some 

quality of the final solution may be sacrificed because the final solution is no longer 

guaranteed to be globally optimal; however, our experience has shown that orthogonal 

2-D retiming finds solutions that are comparable to the ILP solutions, and these solutions 
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axe found in much faster CPU times than the ILP solutions. 

Simply stated, orthogonal 2-D retiming is performed by first performing s-retiming 

and then performing a-retiming, where these two tasks are specified below: 

• s-retiming: Project the 2-D retiming problem onto the s-vector and solve this 1-D 

retiming problem to find the values of s • wr(e) for ee E. 

• a-retiming: Project the 2-D retiming problem onto the a-vector and solve this 1-D 

retiming problem to find the values of a • wr(e) for ee E. 

The following subsections describe s-retiming and a-retiming along with the fanout model 

used in orthogonal 2-D retiming. Throughout these subsections, the notations x^ and 

x^a> are used to denote x • s and x • a, respectively. 

5.4.1    Fanout Model 

In the ILP formulation of 2-D retiming presented in Section 5.3, the fanout constraint is 

used to ensure that the memory required by the output edges of a node is the maximum 

memory required by any of the output edges of the node. In 1-D retiming [27], a "gadget" 

is used to model the fanout node so the memory required by the output edges of the 

node can be accurately modeled using a linear programming formulation. Figure 5.7 

shows a similar gadget used so that the 2-D retiming problem can be modeled as two 

linear programming problems. 

The following four quantities are used in orthogonal 2-D retiming 

wr%ax   =    max 
l<t<k H

s)te)} 
wmlx   = ,  max 

\max 
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wrjLx   = ,  max 
(s) i     \ (s) 

{4a)(ei)}. 

Note that IO^L are known from the unretimed 2DFG, w^%ax and w$ax are known after 

s-retiming has been performed, and Wr%ax are known after s-retiming and a-retiming 

have been performed. 

Figure 5.7(a) shows a fanout node with k output edges. The gadget in Figure 5.7(b) 

is used to model the fanout node in a 2DFG. Each of the k edges e*, 1 < i < k, has 

an associated weight w(e;) which is known from the 2DFG. The node ü is a dummy 

node with zero computation time (d(u) = 0), and the edges e*, 1 < i < k, are dummy 

edges used so the linear programming formulations used in orthogonal 2-D retiming can 

accurately model the memory required by a node with more than one output edge. We 

call the edges ej, 1 < i < k, auxiliary edges. 

In addition to the weights w(ej), each of the edges ej has the associated quantities 

a(ei) = \/k and 

7(e«) : 1/m   if wf'(ei) = w[% 
0        otherwise 

where m is the number of edges et- satisfying w[a\ei) = wf)nax after s-retiming has been 

performed. Each auxiliary edge in Figure 5.7(b) has the associated quantities 

w^(ei)   =   «7&L-«;<•>(*) 

w («0 (ci)    =   w^l-w^iet) 

and cr(ej) = 1/k and 

0        otherwise 

where m has the same definition as it has in 7(ej). 
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UH-^H^)       (^>^-{v2 

• 

(a) (b) 

Figure 5.7:   (a) A fanout node u.   (b) A gadget used to model node u in the linear 
programming formulations of orthogonal 2-D retiming. 

5.4.2    s-Retiming 

In orthogonal 2-D retiming, s-retiming affects the memory requirements of the retimed 

2DFG more than a-retiming because s-retiming deals with entire delay lines while a- 

retiming deals with single delays. As a result, s-retiming is performed first on the 2DFG, 

and then a-retiming is performed. 

In s-retiming the 2-D retiming problem is projected onto the scanning vector. Starting 

with the 2-D retiming equation in (5.1), we can take the dot product of both sides of 

the equation with the scanning vector s to get 

s • wr(e) = s • w(e) + s • r(v) - s • r{u). (5.4) 

Using the notation x^ to denote s • x, (5.4) can be written as 

w^(e) = wW(e) + r^(v) - r^{u). (5.5) 

The first causality constraint in Section 5.3.1 requires s • wr(e) > 0 for all e e E, which 

can be rewritten as w{
r
s){e) > 0 for all e e E. Using this and (5.5) results in 

tflW (c) + r(») („) _ r(«) (u) > o (5.6) 
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for all eeE. The second causality constraint in Section 5.3.1 and the clock period 

constraint in Section 5.3.2 are enforced during a-retiming. 

The cost function for s-retiming is the total number of access lines crossed by the 

dependencies. This can be written as 

COST = £ a(e)w^(e) = £ a(e)w^(e) + £ a(e)(r^(v) - r^(u)), (5.7) 
eeE eeE eeE 

where a(e) is the weight of an edge according to the fanout model in Section 5.4.1. The 

formulation of s-retiming consists of minimizing the total number of access lines crossed 

(i.e., minimize COST in (5.7)) while keeping u;[s)(e) > 0 for all e € E using (5.6). 

Since Y,e£E o-(e)w^(e) is fixed, s-retiming can be stated as: Minimize 

COST' = £ rW(„) ( £ o(e) - £ e(e)) 

subject to rW(u) - r^{v) < u;W(e) for all e £ E. 

Example 5.3 In this example, we perform s-retiming on the 2DFG in Figure 5.6(a) 

assuming s = [ 1 2 ]T and & - [ -2 1 ]T. Using the fanout model described in 

Section 5.4-1, the 2DFG in Figure 5.6(a) is redrawn in Figure 5.8(a), where node 5 is 

the dummy node associated with fanout node 1.  The cost function is 

COST'   =   rW(l)(l-l)+rW(2)Q-|)+rW(3)Q-|) 

+r(s>(4)(2-l)+r(s>(5)(l-0) 

=   -r^(2) - r^(3) + r<*>(4) + r(s>(5). 

The s-retiming problem is to minimize COST' subject to the following seven causality 
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constraints 
rW(l) - -r<*)(2) < 0 
rW(l) - -rW(3) < 0 
rW(2) - -rW(4) < 1 
rW(2) - -rW(5) < 0 
rW(3) - _rW(4) < 3 
rW(3) - -rW(5) < 0 
r(»)(4) - -rW(l) < o, 

and the solution found using the linear programming solver in GAMS [63] is r^(l) = 1, 

r^(2) = 1, r<s)(3) = 3, r<s)(4) = 0, and r<*>(5) = 3. The result of s-retiming is shown 

in Figure 5.8(b), where the numbers in parentheses represent wf\e). This solution is 

combined with the results of a-retiming in Section 5.4-3 to obtain the complete orthogonal 

2-D retiming solution. 

(a) (b) 

Figure 5.8: (a) The unretimed graph using the fanout model, (b) The result of s-retiming, 
where the numbers in parentheses represent Wr  (e). 

The s-retiming formulation accurately models the memory requirements of a fanout 

node. The following explanation uses the notation introduced in Section 5.4.1. Let the 

path u -4 Vi % v, in Figure 5.7 be denoted as p*. The values of Wrfa) are made 

as small as possible under the constraint w{3\ei) > 0. Therefore, the value of r(s)(ü) 

will force wf'fa) = 0 for at least one edge which we call ij (i.e., wi-s\ej) = 0). Since 

mini<j<fc |u;^(e,) j = Wr'(ej) and the retimed path weights w^(pi) are identical for 

1 < i < k (they are all equal to w$ax + r^(u) - As\u)) because the unretimed path 
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weights w^(pi) are identical (they are all equal to t^L), we know w{rS){ej) = w{
r%, 

This means that 

wM(pj)=wP(ej)+wl°\ej) = W(°)nax. 

The total cost of the k fanout edges is 

£        o(e)wM(e)   = £        o(e)v,M(e) 
ee{ei,ei},l<i<k e€{ej,ei},l<i<fc 

+ ]T <x(e)(rW(u)-rW(u)) 
eg{ei,ei},l<i<fc 

V  *  /    *i<<<* «i<i<fc 

=   «;W*+rW(ti)-rW(tz) 

as desired. 

5.4.3    a-Retiming 

In a-retiming the 2-D retiming problem is projected onto the access vector. While s- 

retiming takes the first causality constraint of Section 5.3.1 into account, a-retiming 

takes the second causality constraint and the clock period constraint into account. Like 

s-retiming, a-retiming is a linear programming formulation which can be solved in poly- 

nomial time. 

The constraints for a-retiming are the second causality constraint in Section 5.3.1 and 

the clock period constraint. Starting with (5.1), we can take the dot product of both 

sides of the equation with the access vector a to get 

a • wr(e) = a • w(e) + a • r(u) - a • r(u). (5.8) 
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Using the notation x^ to denote a • x, (5.8) can be written as 

4a)(e) = w(a)(e) + r^(v) - r<ffl>(u). (5.9) u£ 

The second causality constraint in Section 5.3.1 requires u;^(e) > 0 for all e 6 E such 

that wf' (e) = 0. Using this in (5.9) results in 

w(a) (e) + r(a) (v) - r(a) (u) > 0 (5.10) 

for all e e E such that wf\e) = 0. 

Clock period constraints must also be taken into account during a-retiming. A set of 

constraints for a-retiming is formulated such that the clock period of the retimed graph 

satisfies $(G>) < c for some desired clock period c. The following notations are used: 

W(s)(u,v) = min{w(s)(p):uAt)},    u,v€V 

W(s\u,v) = min{t4s)(p) :u4u),    u,v eV 

W(a)(u,v) = min{u;(a)(p) :u4u   and   w\.$)(p) = WJ!'
){u,v)}t    u,v(=V 

W$a\u,v) = min{u4a)(p) :uAt)   and   w^(p) = WJ:s){u,v)},    u,vGV 

D(u,v) = max{d(p) : u A v   and   w{a){p) = W{a){u,v)},    u,v G V 

Dr{u,v) = max{dr(p) :U4B   and   w^ip) = WJ:a){u,v)},    u,veV 

The following two lemmas are useful for finding a-retiming conditions which satisfy a 

given clock period constraint. 

Lemma 5.4 Let r be a legal 2-D retiming which retimes G to Gr.  The following hold: 

5.4.1 Wla){u,v) = wW{u,v) + Aa\v) -Aa\u). 

5.4.2 Dr(u,v) = D{u,v). 
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Proof: 

(5.4.1) 

W^(u,v)    = mm{WW(p):u$v   and   w^(p) = W^(u,v)} 

= mm{w^{p)+r^(v)-r^(u):u^v   and   w^(p) = W^(u,v)} 

= r^{v)-r^{u) + mm{w^(p):uAv   and   w^ (p) = W^{u, v)} 

= r(a){v)-rW(u) + W{aHu,v) 

(5.4.2) We can use d(p) = dr{p) and the result from 5.4.1 to write 

Dr(u,v)    =   max.{dr(p) : u -4 v 

and   w^ (p) + rW (v) - r W (u) = fW (u, v) + r<a> (v) - r<°> (u)} 

=   max{d(p) :uAv   and   w(a)(p) = W^a)(u,v)} 

=   D(u,v).D 

Lemma 5.5 For a legal retiming Gr of G, the following are equivalent: 

5.5.1 $(Gr) < c. 

5.5.2 IfDr(u,v) > c and Wr
(s)(u,u) = 0, then w{a)(u,v) > a- a. 

The proof of Lemma 5.5 is similar to the proof of Lemma 5.2. Lemmas 5.4 and 5.5 

are used to prove the following. 

Theorem 5.6 Given an s-retiming solution such that As\u) - r("\v) < u/s)(e) for 

all edges u A v in E, the values r(°)(u) result in a legal 2-D retiming of G such that 

$(Gr) < c if and only if 

5.6.1 Aa){u) - r^(v) < w^{e) for all e € E such that w[s\e) = 0. 
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5.6.2 r^(u)-r^(v) < W(a\u,v)-&-8i for all vertices u,v e V such that D(u,v) > c 

andWJ:s)(u,v) = 0. 

Proof: 5.6.1 is simply the second causality constraint for a legal 2-D retiming. If 5.6.1 

holds, then r is a legal retiming and by Lemma 5.5 the retimed graph Gr has clock 

period $(G>) < c under the condition W$a\u, v) > a • a for all vertices u,v G V such 

that DT(u, v) > c and Wr (u, v) = 0. Prom Lemma 5.4, we know Dr(u, v) = D(u, v) and 

W$a)(u,v) = WW(u,v)+Aa\v)-rW(u). Therefore, Lemma 5.5 states that $(Gr) < c 

is equivalent to 5.6.2. D 

The cost of a-retiming is the weighted number of scanning lines crossed, given by 

COST = £ 7(e)^a)(e) = £ j(e)w^(e) + £ 7(e)(r(o)(«) - r^(u)). 
e€E ee£ e€E 

Since T,eeEl/(e)w^aHe) is fixed, a-retiming can be stated as follows: Minimize 

COST' = £ r<°) (v) ( £ 7(e) - £ 7(e) 

subject to 

1. r(a)(u) - Aa\v) < wW(e) for all e € £ such that w{
r
s)(e) = 0. 

2. r<B>(ii) - r^{v) < W^{u,v) - a • a for all u,v € V such that D(u,v) > c and 

Wr
(i)(u,u)=0. 

Example 5.4 In this example, a-retiming is performed on the 2DFG in Figure 5.6(a). 

Since a-retiming depends on the results of s-retiming, the results of s-retiming found in 

Example 5.3 are used in this example. The 2DFG in Figure 5.6(a) is redrawn in Fig- 

ure 5.9(a), where the values o/u/°)(e) and w^r
s\e) are explicitly shown. We assume that 

the computation time of each node is 1 time unit, with the exception that the computation 
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Table 5.4: The values of Wr{u,v), W^{u,v), and D{u,v) for Example 5.4. 

W^(u v) 1 2 3 4 5 
1 0 0 2 0 2 
2 1 0 3 0 2 
3 1 1 0 0 0 
4 1 1 3 0 3 
5 - - - - 0 

W(a\u,v) 1 2 3 4 5 
1 0 0 0 3 0 
2 3 0 3 3 0 
3 -1 -1 0 -1 0 
4 0 0 0 0 0 
5 - - - - 0 

D{u,v) 1 2 3 4 5 
1 1 2 2 3 2 
2 3 1 4 2 1 
3 3 4 1 2 1 
4 2 3 3 1 3 
5 - - - - 0 

time of the dummy node 5 is zero.  The goal is to retime the 2DFG so it can be clocked 

with a clock period of 1 time unit. 

w<»= o 
w<»=0 

(a) (b) 

Figure 5.9: (a) The 2DFG which is subjected to a-retiming in Example 5.4. (b) The 
results of s-retiming and a-retiming for the 2DFG in Figure 5.6(a). These results are 
found in Examples 5.3 and 5.4. 

For fanout node 1, w$ax = 0, Wrtmax = 2, Wmlx = 0, and m = 1.   The values of 

Wr(u,v), W^a\u,v), and D(u,v) are given in Table 5.4- 
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The a-retiming formulation is to minimize 

COST'   =   r(a)(l)(l-l)+r(a>(2)(0-l)+r(a)(3)(l-2) 

+r(°)(4)(2-l)+r(a)(5)(l-0) 

=   -rW (2) - rW (3) + r<a> (4) + r<a> (5) 

subject to 
r(«)(l) 

r(a)(2) 
r(a)(3)_r(a 

r(a)(3)_r(a 

r(a)(l)_r(a 

r(«)(l)_r(«: 

r(a)(2) .(«: 

>(2 
)(4 
)(4 
)(5 
)(2 
)(4 

)(4 

)(4 

< 0 
< 3 
< -1 
< 0 
< -5 
< -2 
< -2 
< -6. r(a)(3)_r( 

The a-retiming solution found using the linear programming solver in GAMS [63] is 

r(°)(l) = -7, r(fl)(2) = -2, r<a)(3) = -6, r^(4) = 0, and r^(5) = -6. The 2DFG is 

drawn in Figure 5.9(b) with the results of s-retiming (from Example 5.3) and a-retiming 

shown. 

We can show that the a-retiming formulation accurately models the memory require- 

ments of a fanout node when the practical restriction 

|<4a>(e)|<tfmai(a-a)/2. 

is enforced.   Assume that F(wr(e)) is used to estimate the memory required by the 

edge e. 

S*)< ,.(*) Lemma 5.7 IfuA"(ei) < wY\ej), then F(wr(ei)) < F(wr(ej)). 

Proof: 

u;W(ei)<t4*>(Ci) w. i'He^ + lKw^iej) 
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=►   Hmax{& ■ &)w[s\ei) + Hmax(a ■ a) < ffmax(a • a)wi'\ej) 

=►   Hmax{a ■ a)u;W(ei) + Hmax{a • a)/2 < Hmax{& ■ &)w<f\ej) 

-Hmax(8i-&)/2 (5.11) 

Using w[a)(ei) < #mai(a ■ a)/2 and io£a)(ej) > -#max(a • a)/2, we can write the 

inequalities 

tfmai(a • a)4s)(ei) + ti^fo) < tfmax(a • aju^te) + Hmax{a • a)/2 

and 

Hmax(& ■ B-M'^ej) + wP(ej) > tfmoi(a ■ a)tüW(ej) - Hmax(a ■ a)/2. 

Combining these with the inequality in (5.11) results in 

Hmax(8L ■ a)u4'>fe) + w^(ei) < tfmai(a • 8i)w^(ej) + w^(ej) 

=►   F(wr(e{)) < F(wr{ej)).n 

The following explanation uses the notation introduced in Section 5.4.1. From Lemma 

5.7, we know that for a node u with k output edges, the edge ej which satisfies F(wr(ej)) > 

F{™r(ei)), 1 < i < k, must obey w{s\ej) = w^%ax after s-retiming. Given that 

Wr$ (ej) = w)-%ax, from the definition of F(-) we can see that the edge ej which sat- 

isfies F(wr(ej-)) > F(wr(ei)), 1 < i < k, also satisfies w[a\ej) = v$Lx. To summarize, 

the edge ej which satisfies F(wr{ej)) > F(wr(ej)), 1 < i < k, satisfies w{
r
s)(ej) = w{

r%ax 

and wf\ej) = w)r%ax. 

The goal now is to show that the cost of the fanout node, given by 

£ 7(e)«4a)(e), 
e6{ei,ei},l<i<fc 

is equal to w^max- Let the path u -^ V{ Q ü in Figure 5.7(b) be denoted as pj. The only 

auxiliary edges which affect the cost function are those with tu£s)(ej) = 0 because 7(0*) = 
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0 for any auxiliary edge with w{
r
s)(ei) > 0. For the auxiliary edges with tujfyej) = 0, 

the values of w{
r
a'(ei) are made as small as possible under the constraint w?\ei) > 0. 

Therefore, the value of r^(u) will force w[a\ei) = 0 for at least one edge which satisfies 

w{
r
s)(ei) = 0. Let this edge with wia){ii) = 0 and wPfa) = 0 be the edge e,-. Since 

min      UaHei)\=wM(ej) 

and the retimed path weights w{
r
a)(pi) are identical for 1 < i < k (they are all equal to 

Wmax + r(a\ü) -r(°)(u)) because the unretimed path weights tu(a)(pi) are identical (they 

are all equal to tu&L), we know w[a\ej) = w[%ax. This means that 

wlaHpj) = 4a)(ej)+w(aHej)=wi%ax. 

The total cost of the k fanout edges is 

£        i(e)wM(e)   = £        7(c)w(a)(e) 
ee{ei,ei},l<i<k ee{e;,ej},l<i</c 

+ £        7(e)(r(a)(f)-r(a)(u)) 
e€{e;,ej},l<i<fc 

=   Ä + r(a)(ü)-rW(u) 

=   4aHpj) 

=   w^ 

as desired. 

5.4.4    Combining the results of s-retiming and a-retiming 

The results of s-retiming and a-retiming must be combined to get the retimed 2DFG. 

From w[s){e) = wr(e) • s and w[a\e) = wr(e) • a, we can write 

w[s\e) 
4a)(e) 

sT 

wr(e), 
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so wr(e) can be computed using 

wr(e) = 
T -1 

aJ 
w{

r
s)(e) 

(5.12) 

Example 5.5 For the retiming performed in Examples 5.3 and 5.4, the processing order 

was specified by s = [ 1    2 ]T and& = [ -2    1 }T. Using these values in (5.12) gives 

wP(e) = \ 
1 -2 
2 1 

w[s){e) 

L ^a)(e) 

in Applying this to the results shown in Figure 5.9(b) gives the retimed 2DFG shown i 

Figure 5.10, which is the result of applying orthogonal 2-D retiming to the 2DFG in 

Figure 5.6(a). 

Figure 5.10:  The result of performing orthogonal 2-D retiming on the 2DFG in Fig- 
ure 5.6(a). 

A problem with orthogonal 2-D retiming is that s-retiming and a-retiming may give 

incompatible results. To show this, we consider an alternative solution to a-retiming in 

Example 5.4. The solution r<B>(l) = -8, r<a>(2) = -2, r<a)(3) = -6, r<a>(4) = 0, and 

r» (5) = -6 has the same cost and satisfies all of the a-retiming constraints; however, 

this new a-retiming solution is not compatible with the s-retiming solution found in 
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" 1   -2 ' 
2      1 

1 ' 
-8 

= 17/5 " 
-6/5 

Example 5.3. To see this, note that for the edge 4 4 1, we found wis)(e) = 1 in 

Example 5.3 and our new solution to a-retiming gives wia\e) = 0 + (-8) - 0 = -8, so 

the dependency for this edge in the retimed 2DFG is 

w(e) = I 

Since this dependence vector has non-integer elements, the retimed 2DFG is not practical. 

The following section introduces a variation of orthogonal 2-D retiming which guarantees 

that the retimed dependencies have integer elements for a common set of processing 

orders. 

5.5    Integer Orthogonal 2-D Retiming 

Integer orthogonal 2-D retiming can be used to guarantee that the edge dependence 

1 k 

or s = y k 1 J , where A; is a nonnegative integer. Similar to orthogonal 2-D retim- 

ing, s-retiming and a-retiming are used in integer orthogonal retiming, but a-retiming 

is manipulated in integer orthogonal retiming so the dependencies are guaranteed to 

have integer elements. Since integer orthogonal retiming consists of solving two linear 

programming problems, it can be solved in polynomial time. 

5.5.1    a-retiming for the sx = 1 Case 

The first constraint for a-retiming is r^(u) - Aa)(v) < u/a)(e) for all edges u A v in E 

such that w[s'(e) = 0. This can be written as 

rx{u) 
ry(u) 

rx(v) 
ry{v) 

<w^(e) (5.13) 

for all e e E such that io£s)(e) = 0. From r^(u) = r(u) -s, we know rx(u)sx + ry(u)sy = 

r^{u), which implies rx(u) = As\u) -ry(u)sy because sx = 1 is assumed. Substituting 
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this expression for rx{u) into (5.13) gives 

rWV"K])-as»w<*>-   w 
Assuming that a and s are related by ax = -sy and ay = sx = 1, (5.14) can be written 

as 

ris){u)-ry(u)sy 

ry{u) 

sy(r^(u) - ry(u)sy - r^(v) + ry(v)sy) + (ry(u) - ry(v)) < w^(e). (5.15) 

Since the first constraint for a-retiming applies to the edges with w(
r
a)(e) = 0, this implies 

w(*)(e) = rW(«) -rW(ü), so we can replace r«(u) -r(«)(t») with w^(e) in (5.15) to get 

-syw^(e) + (ry(u) - ry{v))(l + s2
y) < w^(e). 

Expanding u/')(e) = sxwx(e) + sywy(e) and u/a)(e) = -sywx(e) + sxwy(e) results in 

sy{sxwx{e) + syWy(e)) + (ry(u) - ry(v))(l + s2
y) < -Sywx(e) + sxwy(e), 

which can be rewritten using sx = 1 as 

-sywx(e) - s2
yWy{e) + (ry(u) - ry{v))(l + s2

y) < -sywx(e) + wy(e) 

=*    (rv(u) - ry(v))(l + s2
y) < wy(e){\ + s2

y) 

=*    ry(u)-ry(v) <wy(e). 

Therefore, the first constraint for a-retiming when s = [ 1    k ]T is ry{u)-ry{v) < wy(e) 

for all e G E such that w[a) = 0. 

The second constraint for a-retiming is r^(u) - r^(v) < W^(u,v) - a • a for all 

u,veV such that D{u,v) > c and Wr
{s){u,v) = 0. Using the left-hand-side of (5.15) to 

substitute for r^(u) - Aa\v), this can be written as 

sy(r^(u) - rM(v)) + (ry(u) - ry(v))(l + aJ) < W^(u, v) - a • a 
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for all u,v(=V such that D(u,v) > c and Wr
(s)(u,") = 0. Solving for ry{u) - ry(v), the 

second constraint for a-retiming can be written as 

(u) _ < WW(ti,»,)-a.a + J|>(rW(u)-rW(t,)) 

for all u,w € V such that £(«,«) > c and W$s){u,v) = 0. The left-hand side of this 

inequality must be an integer, but the right-hand side is not guaranteed to be an integer 

(this occurs in Example 5.6), so we can rewrite this inequality as 

W^a\u,v)-&-a + Sy(r^(u) - rW(u)) 
l + sl 

ry{u) - ry(v) < 

for all u,v € V such that D(u,v) > c and WJ>s)(u,v) = 0. 

The cost function for a-retiming is 

COST' = £ rM(t,)(£ 7(e) - £ 7(e) 

If we let A;« = (E?4V 7(e) - Y,v$7 7(e)), then the cost can be written as 

COST'   =   Y,(-syrx(v)+ry(v))kv 

=    E(~s!/(r(s)(w) -ry(v)sy) +ry{v))kv 
v€V 

=    Y,(-syr{s)(v))kv + J2ry(v)(l+s2
y)kv. 

During a-retiming, T,veV{-syr^(v))kv and (1 + s£) are constant values, so minimizing 

COST' is equivalent to minimizing 

COST" = £ ry(v) [ £ 7(e) - £ 7(e)) • 

Summarizing, the a-retiming formulation for the case when s = [ 1    k 1    is given 

by: Minimize 

COST" = £ ry(t,) [£ 7(e) - £ 7(e)V 

subject to 
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1. ry(u) - ry(v) < Wy{e) for all e G E such that w[a\e) = 0 

2. ry(u)-ry(v) < 

As) 

vWa>(u,t>)-a-a+sv(rf
J>(u)-rW(u)) 

1 4- «■* 1+ai for all w, v G V such that Z)(u, u) > 

cand WP
w(u,t;) = 0. 

After solving for the values of ry(v), the values of rx(v) can be computed using 

rx(v) = M{v) - ry(v)sy. 

Example 5.6 In this example, we use the integer orthogonal retiming formulation for 

Ik       to retime the 2DFG shown in Figure 5.11(a) assuming the case where s = 

s = ] 1    1       and a = -1    1 The desired clock period is 2 units of time, and 

addition and multiplication are assumed to take 1 and 2 units of time, respectively. The 

result of s-retiming is shown in Figure 5.11(b), where the numbers on the edges are the 

values ofu)r(e). 

Figure 5.11(c) shows the 2DFG in Figure 5.11(a) with the auxiliary edges included to 

properly model the fanout of node 1. Since the integer orthogonal retiming formulation 

uses the values of wy(e) for all e e E, the values of wy(e) on the auxiliary edges in 

Figure 5.11(c) are computed using 

u>(3Xe) 
vjW(e) 

w(e) = 

Then a-retiming consists of minimizing 

COST" = r(fl)(2) + r» (3) - r<a>(4) - r(a)(5) - r<a>(6) + r<fl>(7) 
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x(n,,n2) y(ni,n2) 

(a) (b) 

"(n,,!^) y(nr.n2) 

(d) 

Figure 5.11: (a) The 2DFG which is retimed in Example 5.6. (b) The result of s-retiming. 
(c) The 2DFG showing the dependencies on the auxiliary edges, (d) The retimed 2DFG 
which achieves the desired clock period of 2 time units. 

subject to the causality constraints 

r,(l) - -ry(4) < 1 
r,(l) - -r»(5) < 0 
r,(l) - -r„(6) < 1 
r„(3) - -r„(2) < 0 
r»(4) - -r»(2) < 0 
r„(4) - -r„(7) < 0 
r»(5) - - r»(3) < 0 
r»(5) - -r„(7) < 1 
r»(6) - -r»(7) < 0 
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Table 5.5: The values of Wr
w(u,t;), W^(u,v), and D(u,v) for Example 5.6. 

Wls)(u,v) 1 2 3 4 5 6 7 
1 0 0 0 0 0 0 0 
2 1 0 1 1 1 1 1 
3 1 0 0 1 1 1 1 
4 1 0 1 0 1 1 0 
5 1 0 0 1 0 1 0 
6 2 1 1 2 2 0 0 
7 0 

WW(u,v) 1 2 3 4 5 6 7 
1 0 1 -1 1 -1 0 1 
2 0 0 -1 1 -1 0 1 
3 0 0 0 1 -1 0 1 
4 0 0 -1 0 -1 0 0 
5 0 0 0 1 0 0 2 
6 0 0 0 1 -1 0 1 
7 0 

D(u,v) 1 2 3 4 5 6 7 
1 1 4 4 3 3 3 3 
2 2 1 5 4 4 4 4 
3 3 2 1 5 5 5 5 
4 4 3 7 2 6 6 2 
5 5 4 3 7 2 7 2 
6 5 4 3 7 7 2 2 
7 0 

and the clock period constraints (which use the information in Table 5.5) 

r„(l) - -ry(2) < 0 
r»(l) - -r„(3) < -1 
r,(l) - -r„(4) < 0 
r„(l) - -r„(5) < -1 
r„(l) - - r„(6) < 0 
*V(D " "^(7) < -1 
r„(4) - -r„(2) < -1 
r»(5) - -r„(2) < -1 
r»(5) - -r„(3) < -1 

The retimed 2DFG is shown in Figure 5.11(d). 

5.5.2    a-retiming for the sy = 1 Case 

Using the same techniques as those used in Section 5.5.1 to manipulate a-retiming, we 

can find that a-retiming has the following formulation when s =     k    1 
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Minimize 

subject to 

COST" = £(-rx(t;)) ( £ 7(e) - £ 7(c) 

1. rz(u) - rx(u) > w^e) for all e € £ such that io£s)(e) = 0. 

2. rx(u)-rx(v) > [-^M+a^rMM-rWf^j forall^ G K such that £(u, u) > 

candWr
(s)(u,u)=0. 

After solving for the values of rx(v), the values of ry(v) can be computed using 

ry(v) = A"\v) - rx(v)sx. 

5.6    Comparisons 

In this section we compare the results of using our ILP 2-D retiming technique and 

our orthogonal 2-D retiming technique with the previously published chained [34] and 

schedule-based [33] 2-D retiming approaches. 

Comparisons for the 2DFGs in Figure 5.6(a) and Figure 5.13(a) are given in Table 5.6 

and Table 5.7, respectively. The results in these tables assume that the computation time 

of each node is one time unit, the desired clock period is one time unit, and the 2DFG 

operates on a 256 x 256 data set. Because the number of registers required by the retimed 

2DFG is not the same for each of the 2562 iterations, the number of registers required by 

the retimed 2DFGs is determined by computing the memory required for each of the 2562 

iterations and taking the maximum of these values. To demonstrate this, the memory 

requirement for the 2DFG in Figure 5.12(a) is computed assuming a 4 x 4 data set and 

processing order specified by s = [ 1 1 ]r and a = [ -1 1 ]T. At the beginning 

of iteration [1    2 ]T, the four samples which must be stored due to the dependency 

159 



[1 0 ]T are indicated in Figure 5.12(b) with an "x" and the one sample which must 

be stored due to the dependency [ -1 1 ]T is indicated with an "o". Therefore, the 

iteration [1 2 ]T requires that 5 samples are stored. The reader can verify that the 

iteration [1 1 ]T requires that 4 samples are stored, the iteration [2 2 ]T requires 

that 5 samples are stored. The maximum number of samples that must be stored for 

any iteration is 5, so this 2DFG requires 5 registers. 

(a) (b) 

Figure 5.12: (a) A 2DFG. (b) The samples which must be stored. 

Because the 2DFG in Figure 5.6(a) is small, the ILP 2-D retiming technique described 

in Section 5.3 was used to obtain the results in Table 5.6. Note that the minimum length 

scanning vector feasible for this DFG with schedule-based retiming is s = [ 1 4 ]r. Due 

to the relatively large size of the 2DFG in Figure 5.13(a), the orthogonal 2-D retiming 

technique in Section 5.4 was used to obtain the results in Table 5.7. Since orthogonal 2-D 

retiming resulted in dependence vectors with integer elements, it was not necessary to use 

integer orthogonal retiming for this 2DFG. Figure 5.6(b) shows the retimed version of the 

2DFG in Figure 5.6(a) for s = [ 1 2 )T and a = [ -2 1 ]T, and Figure 5.13(b) shows 

the retimed version of the 2DFG in Figure 5.13(a) for s = [ 1    1 ]T and a = [ 1    1 ]T. 

From Tables 5.6 and 5.7, we can observe that the "schedule-based" retiming technique 

in [33] does not find a solution for any of the processing orders chosen. This is because 

our techniques have less stringent (but still sufficient) causality constraints than the 
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Table 5.6: Memory requirements after retiming the circuit in Figure 5.6(a) assuming a 
256 x 256 data set. 

scanning 
vector 

retiming 
technique 

number of 
registers 

s = [ 0    1 ]T 
ours 258 

chained 510 
schedule-based no solution 

8=[1     2]T 
ours 385 

chained 511 
schedule-based no solution 

Table 5.7: Memory requirements after retiming the circuit in Figure 5.13(a) assuming a 
256 x 256 data set. 

scanning 
vector 

retiming 
technique 

number of 
registers 

s = [l    2]T 
ours 778 

chained 1794 
schedule-based no solution 

S = [   1      1   ]T 
ours 1032 

chained 2048 
schedule-based no solution 

s=[2    If 
ours 780 

chained 1288 
schedule-based no solution 
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schedule-based technique. Thus, our techniques are compatible with more processing 

orders. We can conclude that our techniques offer more flexibility than the schedule- 

based retiming technique because our techniques are compatible with more processing 

orders. 

We can also conclude from Tables 5.6 and 5.7 that our techniques result in solutions 

which require considerably less memory than the chained retiming technique in [34]. 

This is because our formulations are not sensitive to the memory requirements of the 

unretimed 2DFG, while the results of chained retiming are dependent on the memory 

requirements of the unretimed 2DFG. 

5.7    Conclusions 

In this chapter we have presented two techniques for retiming 2DFGs. These two tech- 

niques attempt to minimize the amount of memory required to implement the 2DFGs 

under a given clock period constraint. The ILP 2-D retiming technique solves the entire 

2-D retiming problem as a whole but requires long run times to solve. As a result, this 

technique should be used only for small 2DFGs. Orthogonal 2-D retiming runs faster 

than the ILP technique but occasionally gives incompatible results between s-retiming 

and a-retiming. Therefore, orthogonal 2-D retiming should be used when the 2DFG is 

too large to solve using ILP 2-D retiming, and integer orthogonal 2-D retiming should be 

used when orthogonal 2-D retiming gives incompatible results between s-retiming and 

a-retiming. 

Our comparisons have shown that the techniques presented in this chapter give con- 

siderably better results than previously published techniques. In fact, our techniques can 

result in retimed 2DFGs which require less than 50% of the memory hardware required 
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by the technique in [34]. Our techniques perform better than the technique in [33] be- 

cause our formulations have less stringent (but still sufficient) causality constraints, and 

they perform better than chained retiming in [34] because our formulations are not sen- 

sitive to the memory requirements of the unretimed 2DFG, while the results of chained 

retiming are dependent on the memory requirements of the unretimed 2DFG. 

Future research should be directed toward studying the interactions between inter- 

iteration parallelism and inter-operation parallelism and toward rinding algorithms for 

retiming data-flow graphs which operate on signals which have dimensionality greater 

than two for applications such as video processing. Register minimization in 2-D retiming 

which includes the use of scanning order conversion requires further study. Retiming for 

folding for the one-dimensional case has been studied in [28]. Two-dimensional retiming 

for folding of 2DFGs is another topic of further research. 
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Figure 5.13: (a) A 2-D IIR filter, (b) A retimed version of the filter. 
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Chapter 6 

Conclusions and Future Research 
Directions 

6.1    Conclusions 

We have considered several formal techniques for mapping DSP algorithms to VLSI 

architectures. The salient features of these techniques are that they increase the un- 

derstanding of the interaction between algorithms and architectures, and they provide 

methods for designing new and improved architectures for a wide variety of DSP algo- 

rithms. 

A new formulation of scheduling was presented in Chapter 2. Using this formula- 

tion, we showed that retiming is a special case of scheduling, and we described the 

interaction between retiming and scheduling in a mathematical framework. Algorithms 

were developed for exhaustively generating all retiming and scheduling solutions for a 

strongly connected DFG. By carefully choosing the examples in this chapter, we have 

given scheduling solutions for many niters which are of interest to the high-level synthesis 

community. This community should find the scheduling results for the biquad filter and 

the fifth order wave digital elliptic filter to be of particular interest. 
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New expressions were introduced in Chapter 3 for computing the minimum number 

of registers required to implement a statically scheduled DFG. Two cases are consid- 

ered, namely, the cases where retiming is and is not allowed after the DFG has been 

scheduled. These results should be useful in CAD tools used to design memory-efficient 

architectures. 

The multirate folding transformation was developed in Chapter 4. Within the scope 

of multirate folding, the problems of retiming for multirate folding and register minimiza- 

tion in (multirate) folded architectures were also considered. Together, the formulations 

of multirate folding, retiming for multirate folding, and register minimization provide a 

new technique for designing single-rate VLSI architectures for multirate DSP algorithms, 

such as the discrete wavelet transform. 

In Chapter 5, two techniques for 2-D retiming were presented, namely, ILP 2-D 

retiming and orthogonal 2-D retiming. These techniques can reduce the memory usage 

in 2-D DSP implementations by over 50%. This is of particular importance due to 

the recent high demand for low cost and low power implementations of 2-D DSP for 

multimedia applications. 

6.2    Future Research Directions 

The work presented in this thesis provides the foundation for several interesting future 

research projects. In the area of exhaustive scheduling and retiming, it would be in- 

teresting to include unfolding [62] in the formulation. Since a formulation is given in 

Chapter 2 for folding, it seems natural that a similar formulation can be derived for 

unfolding, since unfolding is essentially the inverse operation of folding. A formulation 

which includes retiming, folding, and unfolding would be interesting from a theoretical 
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point of view as well as a practical point of view. 

In the area of register minimization, we have solved the problem of computing the 

number of registers required by a scheduled DSP algorithm, but the problem of allo- 

cating data to these registers is an open problem. Although several excellent heuristic 

techniques have been suggested (e.g., in [51], [52], and [53]), the topic of memory man- 

agement will be an open problem for many years due to the large percentage of chip area 

which must be dedicated to memory. 

In the area of multirate synthesis, the topics of retiming [35] and scheduling [55] 

for multirate DFGs are still under examination. The study of these topics and the 

development of formulations for retiming and scheduling similar to those in Chapter 2 

(but for the multirate case) would be both useful and interesting. 

In the area of multi-dimensional retiming, 2-D retiming with non-linear scanning 

orders, such as the Dovetail scan [72], would be an interesting extension. Future research 

should also take into account the cost of scan conversion buffers, i.e., the buffers required 

to convert the data to and from the traditional line-by-line scanning order. Another area 

of future research is to extend the 2-D retiming formulations to higher dimensions. This 

problem, which is by no means trivial, has applications in the very popular area of digital 

video processing. 

Finally, one research topic, which we have not been able to address, includes most of 

the topics covered in this thesis. This topic is to combine 2-D retiming, multirate folding, 

and register minimization to develop a multirate/multi-dimensional folding transforma- 

tion. Such a transformation would be useful for designing new two-dimensional discrete 

wavelet transform architectures [73] [74]. 
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